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Abstract We consider a ferromagnetic nearest-neighbor model on a Cayley tree of
degree k � 2 with uncountable local state space [0, 1] where the energy function
depends on a parameter θ ∈ [0, 1). We show that for 0 � θ � 5

3k
the model has a

unique translation-invariant Gibbs measure. If 5
3k

< θ < 1 there is a phase transition,
in particular there are three translation-invariant Gibbs measures.

Keywords Cayley tree · Hammerstein’s integral operator · Bifurcation analysis ·
Gibbs measures · Phase transition

Mathematics Subject Classification (2010) 82B20 · 82B26 · 82B27

1 Introduction

The notion of a phase transition describes the coexistence of more then one equilib-
rium phase of a given system. Usually models depend on one or more parameters
and there exist some critical values of the parameters where the number of equilibria
jump from one to more then one. This jump can be detected by looking at appropriate
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observables as functions of the parameters and there points of discontinuity. From a
physical perspective this amounts to a sudden change of at least one property of the
modelled material. In mathematical terms existence of a phase transition for a system
is given by non-uniqueness of Gibbs measures see for example [5]. In case of Cayley
trees one usually employs the theory of Markov random fields and their consistency
equations for boundary laws [5].

In the present note we continue the investigation from [2] and consider a model
with nearest-neighbor interactions and local state space given by the uncountable
set [0, 1] on a Cayley tree �k of general order k � 2. The translation-invariant
Gibbs measures are studied via a non-linear functional equation and we prove non-
uniqueness of translation-invariant Gibbs measures in the right parameter regime for
all k � 2 and not only for k ∈ {2, 3} as in [2].

It is known that the spin systems on trees have produced the first and most tractable
examples of certain qualitative phenomena. The function ξxy is interpreted as energy
function, which is as usual nonconstant, symmetric and continuous. In [8] the authors
studied several models on general infinite trees, including the classical Heisenberg
and Potts models. The model which we consider in this paper is similar to the known
models (for example rotor [8], spherical [12] and many other models) with nearest-
neighbor interactions which have uncountable set of spin values.

To be more specific, the Hamiltonian of the model depends on a single parameter
θ ∈ [0, 1) and we prove that if 0 � θ � 5

3k
there is a unique translational-invariant

Gibbs measure and if 5
3k

< θ < 1 there are three translational-invariant Gibbs mea-
sures. The design of the Hamiltonian is the result of a sequence of papers [3, 4,
11] providing examples of tree indexed models with uncountable local state space
showing critical behavior of parameters.

2 The Setup

Cayley Tree and Configurations The Cayley tree (Bethe lattice) �k of order k � 1 is
an infinite tree, i.e a graph without cycles, such that exactly k+1 edges originate from
each vertex (see for example [1]). Let �k = (V , L) where V is the set of vertices
and L the set of edges. Two vertices x and y are called nearest neighbors if there
exists an edge l ∈ L connecting them and we denote l = 〈x, y〉. On this tree, there is
a natural distance to be denoted d(x, y), being the number of nearest neighbor pairs
of the minimal path between the vertices x and y (by path one means a collection of
nearest neighbor pairs, two consecutive pairs sharing at least a given vertex). For a
fixed x0 ∈ V , the root, let

Wn = {x ∈ V : d
(
x, x0

)
= n}, Vn = {x ∈ V : d

(
x, x0

)
� n};

be respectively the sphere and the ball of radius n with center at x0, and for x ∈ Wn

let
S(x) = {y ∈ Wn+1 : d(x, y) = 1}

be the set of direct successors of x. There exists a one-to-one correspondence between
the set V of vertices of the Cayley tree of order k � 1 and the group Gk of the free
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products of k + 1 cyclic groups of second order with generators a1, a2, . . . , ak+1. A
configuration σ on V is then defined as a function x ∈ V → [0, 1]; the set of all
configurations is [0, 1]V . For A ⊂ V a configuration σA on A is an arbitrary function
σA : A → [0, 1]. Denote �A = [0, 1]A the set of all configurations on A.

Hamiltonians and Gibbs Measures We consider a model where the spin takes val-
ues in the set [0, 1], and is assigned to the vertices of the Cayley tree. The (formal)
Hamiltonian of the model is given by

H(σ) = −J
∑

〈x,y〉∈L

ξσ(x)σ (y), (2.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0; 1]2 → ξuv ∈ R is a given bounded,
measurable function.1 Let λ be the Lebesgue measure on [0, 1]. On the set of all
configurations on A the a priori measure λA is introduced as the |A| fold product
of the measure λ. Here and further on |A| denotes the cardinality of A. We consider
a standard sigma-algebra B of subsets of � = [0, 1]V generated by the measurable
cylinder subsets. A probability measure μ on (�,B) is called a Gibbs measure (with
Hamiltonian H ) if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equation, namely
for any n = 1, 2, . . . , and σn ∈ �Vn :

μ
({σ ∈ � : σ |Vn

= σn}
) =

∫

�

μ(dω)ν
Vn

ω|Wn+1
(σn),

where ν
Vn

ω|Wn+1
is the conditional Gibbs density

ν
Vn

ω|Wn+1
(σn) = 1

Zn(ω|Wn+1)
exp

(−βH(σn, ω|Wn+1)
)
,

and β = 1
T

, T > 0 is the temperature.
Denote by Ln = {〈x, y〉 ∈ L : x, y ∈ Vn} the set of edges in a ball with radius n.

Let �Vn be the set of configurations in Vn and �Wn the set of configurations in Wn.
Furthermore, σ |Vn

and ω|Wn
denote the restrictions of configurations σ, ω ∈ � to Vn

and Wn+1, respectively. Next, σn : x ∈ Vn �→ σn(x) is a configuration in Vn and
H

(
σn, ω|Wn+1

)
is defined as the sum H(σn) + U

(
σn, ω|Wn+1

)
where

H(σn) = −J
∑

〈x,y〉∈Ln

ξσn(x)σn(y),

U
(
σn, ω|Wn+1

) = −J
∑
〈x,y〉:

x∈Vn, y∈Wn+1

ξσn(x)ω(y).

1We note that the reason to study such models is their simplicity and these models may have non-
uniqueness of Gibbs measures, i.e. provide examples of models with uncountable spin values with phase
transitions [10].
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Finally, Zn

(
ω |Wn+1

)
stands for the partition function in Vn, with the boundary

condition ω |Wn+1 :

Zn

(
ω |Wn+1

) =
∫

�Vn

exp
(−βH

(
σ̃n, ω |Wn+1

))
λVn(dσ̃n).

An Integral Equation Write x < y if the path from x0 to y goes through x. Call
vertex y a direct successor of x if y > x and x, y are nearest neighbors. Denote by
S(x) the set of direct successors of x. Observe that any vertex x 	= x0 has k direct
successors and x0 has k + 1. Let h : x ∈ V �→ hx = (ht,x, t ∈ [0, 1]) ∈ R

[0,1] be
a mapping of x ∈ V \ {x0}. Given n = 1, 2, . . ., consider the probability distribution
μ(n) on �Vn defined by

μ(n)(σn) = Z−1
n exp

⎛
⎝−βH(σn) +

∑
x∈Wn

hσ(x),x

⎞
⎠ . (2.2)

Here, as before, σn : x ∈ Vn �→ σ(x) and Zn is the corresponding partition function:

Zn =
∫

�Vn

exp

⎛
⎝−βH (̃σn) +

∑
x∈Wn

hσ̃ (x),x

⎞
⎠ λVn(dσ̃n). (2.3)

The probability distributions μ(n) are called compatible if for any n � 1 and
σn−1 ∈ �Vn−1 :

∫

�Wn

μ(n)(σn−1 ∨ ωn)λWn(d(ωn)) = μ(n−1)(σn−1). (2.4)

Here σn−1 ∨ ωn ∈ �Vn is the concatenation of σn−1 and ωn. In this case, because of
the Kolmogorov extension theorem, there exists a unique measure μ on �V such that,

for any n and σn ∈ �Vn , μ

({
σ

∣∣∣
Vn

= σn

})
= μ(n)(σn). The following proposition

is proved in [11].

Proposition 2.1 The probability distributions μ(n)(σn), n = 1, 2, . . ., in (2.2) are
compatible iff for any x ∈ V \ {x0} the following equation holds:

f (t, x) =
∏

y∈S(x)

∫ 1
0 exp(Jβξtu)f (u, y)du

∫ 1
0 exp(Jβξ0u)f (u, y)du

. (2.5)

Here, and below f (t, x) = exp(ht,x − h0,x), t ∈ [0, 1] and du = λ(du) is the
Lebesgue measure.

From Proposition 2.1 it follows that for any h = {hx ∈ R
[0,1], x ∈ V } satisfying

(2.5) there exists a unique Gibbs measure μ and vice versa. However, the analysis of
solutions to (2.5) is not easy. This difficulty depends on the given function ξ .
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In [2] a function ξtu is constructed under which the (2.5) has at least two solutions
(on the Cayley tree of order k = 2 and 3) in the class of translation-invariant functions
f (t, x), i.e f (t, x) = f (t), for any x ∈ V . In this paper we generate this result for
any k � 2. For translation-invariant functions (2.5) can be written as

f (t) =
( ∫ 1

0 K(t, u)f (u)du
∫ 1

0 K(0, u)f (u)du

)k

, (2.6)

where K(t, u) = exp(Jβξtu), f (t) > 0, t, u ∈ [0, 1]. We put

C+[0, 1] = {f ∈ C[0, 1] : f (x) � 0}.

We are interested in positive continuous solutions to (2.6).

A Representation of Solutions For every k ∈ N we consider an integral operator Hk

acting in the cone C+[0, 1] as

(Hkf )(t) =
∫ 1

0
K(t, u)f k(u)du, k ∈ N.

The operator Hk is called Hammerstein’s integral operator of order k. This oper-
ator is well known to generate ill-posed problems [6, 7]. Clearly, if k � 2 then Hk is
a nonlinear operator.

It is known that the set of translation-invariant Gibbs measures of the model (2.1)
is described by the fixed points of Hammerstein’s operator (see [11]).

Let k � 2 in the model (2.1) and

ξt,u = ξt,u(θ, β) = 1

β
ln

(
1 + θ

3

√
4

(
t − 1

2

) (
u − 1

2

))
, t, u ∈ [0, 1] (2.7)

where 0 � θ < 1. Then for the kernel K(t, u) of the Hammerstein operator Hk we
have

K(t, u) = 1 + θ
3

√
4

(
t − 1

2

)(
u − 1

2

)
.

Note that this model was first considered in [2] and for k = 2, 3 it was shown non-
uniqueness of translation-invariant Gibbs measures. In this paper we generalize the
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results of [2] to arbitrary k � 2. In [2] we defined the operator Vk : (x, y) ∈ R
2 →

(x′, y′) ∈ R
2 by

Vk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′ = 3

((
x+yθ

3√2
)k+1−

(
x−yθ

3√2
)k+1

2 3√2(k+1)yθ
−

(
x+yθ

3√2
)k+2+

(
x−yθ

3√2
)k+2

3√4(k+1)(k+2)y2θ2
+

+
(
x+yθ

3√2
)k+3−

(
x−yθ

3√2
)k+3

2(k+1)(k+2)(k+3)y3θ3

)

y′ = 3

⎛
⎝

(
x+yθ

3√2
)k+1+

(
x−yθ

3√2
)k+1

2 3√4(k+1)yθ
−

3

((
x+yθ

3√2
)k+2−

(
x−yθ

3√2
)k+2

)

4(k+1)(k+2)y2θ2 +

+
3

((
x+yθ

3√2
)k+3+

(
x−yθ

3√2
)k+3

)

2 3√2(k+1)(k+2)(k+3)y3θ3
−

3

((
x+yθ

3√2
)k+4−

(
x−yθ

3√2
)k+4

)

2 3√4(k+1)(k+2)(k+3)(k+4)y4θ4

⎞
⎠

(2.8)
and the following proposition was proved.

Proposition 2.2 A function ϕ ∈ C[0, 1] is a solution of Hammerstein’s equation

(Hkf )(t) = f (t) (2.9)

iff ϕ(t) has the following form

ϕ(t) = x′ + y′θ 3

√
4

(
t − 1

2

)
,

where (x′, y′) ∈ R
2 is a fixed point of the operator Vk (2.8).

For k = 2, 3 and in the right parameter regime non-uniqueness of translation-
invariant Gibbs measures was proved.

3 Bifurcation Analysis of the System

The function Vk can be written in the following way. First for even k � 2:

Vk(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x′ = 3
∑

l=0,2,...,k

(
k

l

)
xl

(
3
√

2θy
)k−l

Ak(l)

y′ = 3
∑

l=1,3,...,k−1

(
k

l

)
xl

(
3
√

2θy
)k−l

Bk(l)

(3.1)

And for odd k � 3:

Vk(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x′ = 3
∑

l=1,3,...,k

(
k

l

)
xl

(
3
√

2θy
)k−l

Ak(l)

y′ = 3
∑

l=0,2,...,k−1

(
k

l

)
xl

(
3
√

2θy
)k−l

Bk(l)

(3.2)
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Here we wrote

Ak(l) := 1
(k+1−l)

− 2
(k+2−l)(k+1−l)

+ 2
(k+3−l)(k+2−l)(k+1−l)

Bk(l) := 3√4
2(k+1−l)

− 3 3√4
2(k+2−l)(k+1−l)

+ 3 3√4
(k+3−l)(k+2−l)(k+1−l)

− 3 3√4
(k+4−l)(k+3−l)(k+2−l)(k+1−l)

We prove the following theorem.

Theorem 3.1 a) If 0 � θ � 5
3k

, then the Hammerstein operator Hk has a unique
(nontrivial) positive fixed point in C[0, 1];

b) If 5
3k

< θ < 1, then there are exactly three positive fixed points in C[0,1] of
Hammerstein’s operator.

Proof Case y = 0. In this case from (3.1) and (3.2) for Vk(x, y) = (x, y) we get

x = xk

this equation has two solutions x = 0, x = 1 if k is even and three solu-
tions x = 0, x = ±1 if k is odd. Thus Vk(x, y) has two (three) fixed points
(0, 0), (1, 0) ((0, 0), (1, 0), (−1, 0)). Hence by Proposition 2.1 we have one
positive solution ϕ(t) = 1 of Hammerstein’s equation for any k � 1.

Case y 	= 0. Let us start with k even say k = 2m. For z = x
y

this fixed point
equation reads

z =

∑
l=0,2,...,2m

(
k

l

)
zl

(
3
√

2θ
)k−l

Ak(l)

∑
l=1,3,...,2m−1

(
k

l

)
zl

(
3
√

2θ
)k−l

Bk(l)

=: f (z) (3.3)

In order to determine the number of fixed points we need to determine the number
of solutions of the equation

∑
l=0,2,...,k

(
k

l

)
zl

(
3
√

2θ
)k−l

Ak(l) = ∑
l=2,4,...,k

(
k

l − 1

)
zl

(
3
√

2θ
)k−l+1

Bk(l − 1)

(3.4)
which is equivalent to finding number of positive roots of the polynomial

rk,0(θ) + ∑
1,2,...,m

rk,2l(θ)t l = 0 (3.5)

where t = z2 and rk,0(θ) :=
(

3
√

2θ
)k

Ak(0) � 0,

rk,l(θ) :=
(

3
√

2θ
)k−l

[(
k

l

)
Ak(l) −

(
k

l − 1

)(
3
√

2θ
)

Bk(l − 1)

]
. (3.6)
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Notice that the sign of the coefficient rk,l(θ) is determined by the sign of

mk,l(θ) := 1
l
((k − l)(k + 3 − l) + 2) − θ

(
k − l + 6

k+4−l
− 6

(k+5−l)(k+4−l)

)]
.

In other words, for fixed even k and l ∈ {2, 4, . . . , k}, mk,l(θ0) = 0 marks the value of
θ where the sign changes. Notice the derivative of m is negative, hence m is positive
for θ < θ0 and negative for θ > θ0. Also notice, the critical value θ0(l) is decreasing
in l, indeed, the function

fk(j) := (k − 2j)(k + 3 − 2j) + 2

2j
((

k − 2j + 6
k+4−2j

− 6
(k+5−2j)(k+4−2j)

) ,

where we substituted 2j := l is strictly decreasing which can be verified in the
following way:

f ′
k(j) = − j2(4k+12)−j (24k+20+4k2)+(23k+9k2+k3+15)

(3+k−2j)2j2

Since the denominator is positive we verify that the function gk(j) := j2(4k +12)−
j (24k + 20 + 4k2) + (23k + 9k2 + k3 + 15) � 0. But this is true since it attains its

global minimum at j0 = k2+6k+5
2k+6 � k

2 with gk(j0) = 4(5+6k+k2)
3+k

� 0. So we have

a decreasing sequence of critical (θ0(l))l∈{2,4,...,k} with the lowest θ0(k) = θcr = 5
3k

.
Below θcr all coefficients rk,l(θ) are positive and hence, there is no nontrivial root for
the polynomial. Above the critical value θcr the bifurcation picture changes and the
polynomial has exactly one real root t0 by Descartes’ rule of signs. Hence by z2 = t0
we have z = ±√

t0.
For even k we have z0 = √

t0, z1 = −√
t0, so z0 = f (z0) =: F1(z0)

F2(z0)
one can

recover solutions for the two-dimensional fixed point equation:
⎧⎪⎪⎨
⎪⎪⎩

(x0, y0) =
(

F1(z0)
F2(z0)

G
1

1−k

0 , G0

)

(x1, y1) =
(

F1(z1)
F2(z1)

G
1

1−k

1 , G1

)
= (x0, −y0).

(3.7)

where G0 = 3
∑

l=0,2,...,k

(
k

l

)(
F1(z0)
F2(z0)

)l−1 (
3
√

2θ
)k−l

Ak(l) and

G1 = 3
∑

l=1,...,k

(
k

l

)(
F1(z1)
F2(z1)

)l−1 (
3
√

2θ
)k−l

Ak(l).

Consequently by Proposition 2.1 the operator Hk has a unique positive fixed point
ϕ1(t) ≡ 1 if 0 � θ � 5

3k
. In the case 5

3k
< θ < 1 the functions

ϕ1(t) ≡ 1, ϕ2(t) = x0 + y0θ
3

√
4

(
t − 1

2

)
, ϕ3(t) = x0 − y0θ

3

√
4

(
t − 1

2

)
(3.8)

ϕ1, ϕ2 and ϕ3 all are fixed points (2.9).
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Since (0, 0) is always a solution of the fixed point equation and Vk is odd, above
the critical value we have exactly three solutions.

For odd k, (3.5) reads
∑

l=1,3,...,k

rk,l(θ)zl = 0. Since we are looking for positive

roots, we can divide by z and look at rk,1(θ) + ∑
l=2,...,k−1

rk,l+1(θ)zl = 0. By the

same calculations as in the even case we find that the bifurcation picture changes at
θcr .

From Proposition 2.1 and Theorem 3.1 it follows that

Theorem 3.2 a) If 0 � θ � 5
3k

for the model (2.1) on the Cayley tree �k , then there
exists a unique translation-invariant Gibbs measure;

b) If 5
3k

< θ < 1, then there exist three translation-invariant Gibbs measures.
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