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Àííîòàöèÿ

Maqolada bitta xosil qiluvchiga ega bo'lgan Leibniz algebralari

to'plami ochiq to'plam bo'lishi ko'rsatilgan va uning yopilmasi

keltirilmaydigan komponenta bo'lishi isbotlangan.

Â äàííîé ðàáîòå ïîêàçàíî, ÷òî ìíîæåñòâî îäíîïîðîæäåííûõ

àëãåáð Ëåéáíèöà ÿâëÿåòñÿ îòêðûòûì ìíîæåñòâîì è åe çàìûêàíèå

ÿâëÿåòñÿ íåïðèâîäèìîé êîìïîíåíòîé ìíîãîîáðàçèÿ àëãåáð Ëåéáí-

öèà.

The theory of deformations originated with the problem of classifying all
possible pairwise non-isomorphic complex structures on a given di�erentiable
real manifold. Formal deformations of arbitrary rings and associative
algebras, and the related cohomology questions, were �rst investigated
by Gerstenhaber [4]. Firstly the notion of deformation was applied to
Lie algebras by Nijenhuis and Richardson [7]. Because various �elds in
mathematics and physics exist in which deformations are used. They studied
one-parameter deformations and established connection between Lie algebra
cohomology and in�nitesimal deformations.

Recall, that Leibniz algebras are generalization of Lie algebras [5], [6] and
it is natural to apply the theory of deformations for the study of Leibniz
algebras.

Let V be the underlying vector space of the Leibniz algebra L of dimension
n and let GL(V ) be the group of the invertible linear mappings f such that
f ∈ GLn(F ). The action of the group GL(V ) on the variety of Leibniz
algebras induces an action on the Leibniz algebras variety: two laws µ1 and
µ2 are isomorphic, if there exists a linear mapping f , such that

µ2(x, y) = f−1(µ1(f(x), f(y))) for all x ∈ Vα, y ∈ Vβ.

The orbit under this action denoted by Orb(µ) and consists of all algebras
isomorphic to the algebra µ. Therefore the description of n-dimensional
algebras with dimensions n (further denoted by Leibn) can be reduced to
a geometric problem of classi�cation of orbits under the action of the group
GL(V ).
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From algebraic geometry it is known that an algebraic variety is an union
of irreducible components. The algebras with open orbits in the variety
of Leibniz algebras are called rigid. The closures of these open orbits give
irreducible components of the variety. Therefore studying of the rigid algebras
is crucial problem from the geometrical point of view. The problem of �nding
such algebras is crucial for the description of the variety Leibn.

In this paper we calculate the second group of cohomology of the null-
�liform Leibniz algebra and show that the set of single-generated Leibniz
algebras forms an irreducible component of the variety of Leibniz algebras.

Moreover, it established that any single-generated algebra is linear
integrable deformation of null-�liform algebra.

Throughout the paper we consider �nite-dimensional vector spaces and
algebras over the �eld of zero characteristic. Moreover, in the multiplication
table of a Leibniz algebra the omitted products assumed to be zero.

De�nition 1. A Leibniz algebra over F is a vector space L equipped
with a bilinear map, called bracket, [−,−] : L×L→ L satisfying the Leibniz
identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y],

for all x, y, z ∈ L.
We call a vector space M a module over L if there are two bilinear maps:

[−,−] : L×M →M and [−,−] : M × L→M

satisfying the following three axioms

[m, [x, y]] = [[m,x], y]− [[m, y], x],

[x, [m, y]] = [[x,m], y]− [[x, y],m],

[x, [y,m]] = [[x, y],m]− [[x,m], y],

for any m ∈M , x, y ∈ L.
Given a Leibniz algebra L, let Cn(L,M) be the space of all F -linear

homogeneous mapping L⊗n →M , n ≥ 0 and C0(L,M) = M .
Let dn : Cn(L,M) → Cn+1(L,M) be an F -homomorphism de�ned by

(dnf)(x1, . . . , xn+1) := [x1, f(x2, . . . , xn+1)]+
n+1∑
i=2

(−1)i[f(x1, . . . , x̂i, . . . , xn+1), xi]

+
∑

1≤i<j≤n+1

(−1)j+1f(x1, . . . , xi−1, [xi, xj], xi+1, . . . , x̂j, . . . , xn+1),
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where f ∈ Cn(L,M) and xi ∈ L. Since the derivative operator d =
∑
i≥0

di

satis�es the property d ◦ d = 0, the n-th cohomology group is well de�ned
and

HLn(L,M) = ZLn(L,M)/BLn(L,M),

where the elements ZLn(L,M) and BLn(L,M)) are called n-cocycles and
n-coboundaries, respectively.

Usually a 2-cocycle is called in�nitesimal deformation.
A deformation of a Leibniz algebra L is a one-parameter family Lt of

Leibniz algebras with the bracket

µt = µ0 + tϕ1 + t2ϕ2 + · · · ,

where ϕi are 2-cochains, i.e., elements of Hom(L⊗ L,L) = C2(L,L).
Note that a linear integrable deformation ϕ satis�es the condition

ϕ(x, ϕ(y, z))− ϕ(ϕ(x, y), z) + ϕ(ϕ(x, z), y) = 0. (1)

For a Leibniz algebra L consider the following central lower series:

L1 = L, Lk+1 = [Lk, L1], k ≥ 1.

De�nition 2. A Leibniz algebra L is said to be nilpotent, if there exists
p ∈ N such that Lp = 0.

Now we give the notion of null-�liform Leibniz algebra.
De�nition 3. An n-dimensional Leibniz algebra is said to be null-�liform

if dimLi = n+ 1− i, 1 ≤ i ≤ n+ 1.
Theorem 1 [1]. An arbitrary n-dimensional null-�liform Leibniz algebra

is isomorphic to the algebra:

NFn : [ei, e1] = ei+1, 1 ≤ i ≤ n− 1,

where {e1, e2, . . . , en} is a basis of the algebra NFn.
Note that any derivation of null-�liform Leibniz algebra NF n has the

following matrix form [3]:
a1 a2 a3 . . . an

0 2a1 a2 . . . an−1

0 0 3a1 . . . an−2

. . . . . . . . . . . .
0 0 0 . . . na1

 .
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From this we conclude that DimBL2(NF n, NF n) = n2 − n.
In general, 2-cocycle is a bilinear map from NF n ⊗ NF n to NF n such

that d2ϕ = 0, i.e.

d2ϕ(x, y, z) = [x, ϕ(y, z)]−[ϕ(x, y), z]+[ϕ(x, z), y]+ϕ(x, [y, z])−ϕ([x, y], z)+ϕ([x, z], y).

Proposition 1. The following cochains:

ϕj,k(xj, x1) = xk, 1 ≤ j ≤ n, 2 ≤ k ≤ n,

ψj (1 ≤ j ≤ n− 1) =

{
ψj(xj, x1) = x1,
ψj(xi, xj+1) = −xi+1, 1 ≤ i ≤ n− 1,

form the basis of ZL2(NF n, NF n).
Proof. Using the Leibniz 2-cocycle property (d2ϕ)(xi, x1, x1) = 0, we

have

ϕ(xi, x2) = −[xi, ϕ(x1, x1)], 1 ≤ i ≤ n− 1, ϕ(xn, x2) = 0 (2)

The conditions (d2ϕ)(xi, x1, xj) = 0, (d2ϕ)(xi, xj, x1) = 0 for 1 ≤ i ≤ n,
2 ≤ j ≤ n imply

[xi, ϕ(x1, xj)] + [ϕ(xi, xj), x1]− ϕ([xi, x1], xj) = 0,

[xi, ϕ(xj, x1)]− [ϕ(xi, xj), x1] + ϕ(xi, [xj, x1]) + ϕ([xi, x1], xj) = 0.

Summarizing above equalities, we derive
ϕ(xi, xj+1) = −[xi, ϕ(x1, xj) + ϕ(xj, x1)], 1 ≤ i ≤ n− 1,

2 ≤ j ≤ n− 1,

ϕ(xn, xj+1) = 0, 2 ≤ j ≤ n− 1,

[xi, ϕ(x1, xn) + ϕ(xn, x1)] = 0, 1 ≤ i ≤ n.

(3)

Set ϕ(xj, x1) =
n∑

k=1

aj,kxk for 1 ≤ i ≤ n.

Using inductively method from equalities (2) and (3) we get an,1 = 0 and

ϕ(xi, xj+1) = −aj,1xi+1, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1.
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Therefore, we obtain that any in�nitesimal deformation of NF n has the
following form:
ϕ(xj, x1) = aj,1x1 + aj,2x2 + · · ·+ aj,nxn, 1 ≤ j ≤ n− 1

ϕ(xn, x1) = an,2x2 + · · ·+ an,nxn,

ϕ(xi, xj+1) = −aj,1xi+1, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1.

Therefore, ϕj,k and ψj form a basis of ZL2(NF n, NF n). �
Corollary 1. dim(ZL2(NF n, NF n)) = n2 − 1.
Below we describe a basis of subspace BL2(NF n, NF n) in terms of ϕj,k

and ψj.
Proposition 3. The cocycles

ξj,k :


ξj,1 = ψj−1 − ϕj,2, 2 ≤ j ≤ n,

ξj,k = ϕj−1,k, 2 ≤ j ≤ k ≤ n,

ξj,k = ϕj−1,k − ϕj,k+1, 2 ≤ k < j ≤ n

form a basis of BL2(NF n, NF n).
Proof. Consider endomorphisms fj,k de�ned as follows:

fj,k(xj) = xk, 2 ≤ j ≤ n, 1 ≤ k ≤ n.

It is easy to see that fj,k are complement of derivations to C1(NF n, NF n).
Therefore, the elements of the space BL2(NF n, NF n) are d1fj,k such that
d1fj,k = fj,k([x, y])− [fj,k(x), y]− [x, fj,k(y)].

Then we obtain

d1fj,1 (2 ≤ j ≤ n) =


d1fj,1(xj−1, x1) = x1,

d1fk,1(xj, x1) = −x2,

d1fj,1(xi, xj) = −xi+1, 2 ≤ i ≤ n− 1,

d1fj,k

(
2 ≤ j ≤ n,
2 ≤ k ≤ n− 1

)
=

{
d1fj,k(xj−1, x1) = xk,

d1fj,k(xj, x1) = −xk+1,

d1fk,n (2 ≤ k ≤ n) = {d1fk,n(xk−1, x1) = xn.

It should be noted that
d1fj,1 = ψj−1 − ϕj,2 2 ≤ j ≤ n,

d1fj,k = ϕj−1,k − ϕj,k+1, 2 ≤ j ≤ n, 2 ≤ k ≤ n− 1,

d1fj,n = ϕj−1,n, 2 ≤ j ≤ n.
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From the condition d1fk,s + d1fk+1,s+1 + · · · + d1fn+k−s,n = ϕk−1,s for
2 ≤ k ≤ s ≤ n, we conclude that the maps ξk,s, 2 ≤ k ≤ n, 1 ≤ s ≤ n form
the basis of BL2(NF n, NF n). �

Corollary 2. The adjoint classes ϕn,k (2 ≤ k ≤ n) form a basis of
HL2(NF n, NF n). Consequently, dimHL2(NF n, NF n) = n− 1.

In the following proposition we describe in�nitesimal deformations of
NF n satisfying the equality (1).

Proposition 4. A 2-cocycle of NF n satisfy the equality (1) if and only
if it has the form: ∑

j,k

aj,kϕj,k.

Proof. It is easy to check that 2-cocycles of the form
∑
j,k

aj,kϕj,k are satisfy

the equality (1).

Let ϕ ∈ ZL2(NF n, NF n), then ϕ =
∑
j,k

aj,kϕk,s +
n−1∑
j=1

bjψk.

From condition

ϕ(x1, ϕ(x1, x1))− ϕ(ϕ(x1, x1), x1) + ϕ(ϕ(x1, x1), x1) = 0,

we get b1 = 0.
The following chain of equalities

ϕ(xi, ϕ(xj, xj+1))− ϕ(ϕ(xi, xj), xj+1) + ϕ(ϕ(xi, xj+1), xj) =

ϕ(xi, ψj(xj, xj+1))− ϕ(ψj−1(xi, xj), xj+1) + ϕ(ψj(xi, xj+1), xj) =

−ψj(xi, bjxj+1) + ψj(bj−1xi+1, xj+1)− ψj−1(bjxj+1, xj) =

b2jxi+1 − bjbj−1xi+2 + bjbj−1xi+2 = b2jxi+1

imply bj = 0, 2 ≤ j ≤ n− 1.
Consider linear integrable deformations µt = NF n + t

∑
j,k

aj,kϕj,k of NF n.

Since every non-trivial equivalence class of deformations de�nes uniquely
an element of HL2(L,L), due to Corollary 2 it is su�cient to consider

µt(a2, a3, . . . , an) = NF n + t
n∑

k=2

akϕn,k, where (a2, a3, . . . , an) 6= (0, 0, . . . , 0).

Thus, the table of multiplication of µt(a2, a3, . . . , an) has the form[xi, x1] = xi+1, 1 ≤ i ≤ n− 1,

[xn, x1] = t
n∑

k=2

akxk.
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Putting a′k = tak, we can assume t = 1.
Proposition 5. An arbitrary single-generated Leibniz algebra admit a

basis {x1, x2, . . . , xn} such that the table of multiplication has the form of
µ1(a2, a3, . . . , an).

Proof Let L be a single generated Leibniz algebras and let x be a
generator of L. We put

x1 = x, x2 = [x, x], x3 = [[x, x], x], . . . , xn = [[x, x], ..., x].

Since x is a generator, {x1, x2, . . . , xn} form a basis of L. Evidently
{x2, . . . , xn} belong to right annihilator of L. Hence, we have [xi, xj] = 0, 2 ≤
j ≤ n− 1. Let [xn, x1] =

n∑
k=1

akxk.

From the Leibniz identity [x1, [xn, x1]] = [[x1, xn], x1] − [[x1, xn], x1] =
0, we conclude a1 = 0. Therefore, we obtain the existence a basis
{x1, x2, . . . , xn} in any single-generated Leibniz algebra such that the table
of multiplication in this basis has the form:[xi, x1] = xi+1, 1 ≤ i ≤ n− 1,

[xn, x1] =
n∑

k=2

akxk.

Let aj is the �rst non vanishing parameter in algebra µ(a2, a3, . . . , an),
then by scaling x′i = 1

n−j+1
√

aj
ixi, 1 ≤ i ≤ n, we can assume aj = 1, i.e the

�rst non-vanishing parameter can be taken equal to 1.
Note that the set of single-generated Leibniz algebras is open. Indeed, if

q-generated (q > 1) Leibniz algebra with a basis {e1, e2, . . . , en}, then for any
ei ∈ L the elements ei, e

2
i , . . . , e

n
i are linear depended. That is determinants of

the matrices Ai, 1 ≤ i ≤ n which consists of the rows ei, e
2
i , . . . , e

n
i are zero,

hence we get n-times of polynomials with structure constants of the algebra.
Therefore, q-generated (q > 1) Leibniz algebras form a closed set. Taking into
account that the set of all single-generated Leibniz algebras is complemented
set to the closed set, we conclude that the set of single-generated Leibniz
algebras is open.

It is easy to see that an algebra µ1(a2, a3, . . . , an) is a linear deformation
of an algebra µ1(a

′
2, a

′
3, . . . , a

′
n).

Since dim(Der(µ1(a2, a3, . . . , an))) = n − 1, (a2, a3, . . . , an) 6=
(0, 0, . . . , 0), then by arguments used in [2] for non-isomorphic algebras
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µ1(a2, a3, . . . , an) and µ1(a
′
2, a

′
3, . . . , a

′
n) we derive µ1(a2, a3, . . . , an) /∈

Orb(µ1(a′2, a
′
3, . . . , a

′
n)).

Summarizing results on single-generated Leibniz algebras, we obtain the
main result of the paper.

Theorem 2.
⋃

a2,...,an

Orb(µ1(a2, a3, . . . , an)) forms an irreducible

component of the variety of n-dimensional Leibniz algebras.
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