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In this work we investigate the complex Leibniz superalgebras with characteristic

sequence (n−1, 1|m1, . . . , mk) and with nilindex equal to n+m. We prove that such super-
algebras with the condition m2 �= 0 have nilindex less than n+m. Therefore the complete
classification of Leibniz algebras with characteristic sequence (n − 1, 1|m1, . . . , mk)
and with nilindex equal to n+m is reduced to the classification of filiform Leibniz super-
algebras of nilindex equal to n + m, which was provided in [3, 7].
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1. Introduction

During many years the theory of Lie superalgebras has been actively studied by
many mathematicians and physicists. A systematic exposition of basic Lie superal-
gebras theory can be found in [9]. Many works have been devoted to the study
of this topic, but unfortunately most of them do not deal with nilpotent Lie
superalgebras. In works [4, 5, 7] the problem of the description of some classes
of nilpotent Lie superalgebras has studied. It is well known that Lie superalgebras
are a generalization of Lie algebras. In the same way, the notion of Leibniz alge-
bras, which were introduced in [10], can be generalized to Leibniz superalgebras.
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The elementary properties of Leibniz superalgebras were obtained in [1]. For nilpo-
tent Leibniz superalgebras the description of the case of maximal nilindex (nilpotent
Leibniz superalgebras distinguished by the feature of being singly-onegenerated)
is not difficult and was done in [1]. However, the next stage (the description of
Leibniz superalgebras with dimensions of the even and odd parts equal to n and
m, respectively, and of nilindex n + m) is a very problematic one. It should be
noted that such Lie superalgebras were classified in [7]. Due to the great diffi-
culty of solving in general the problem of description of Leibniz superalgebras of
nilindex n + m, some restrictions on the characteristic sequence should be added,
in particular, since the graded anticommutative identity does not hold in non-Lie
Leibniz superalgebras. In the description of the structure of Leibniz superalgebras
the crucial task is to prove the existence of a suitable basis (the so-called adapted
basis) in which the table of multiplication of the superalgebra has the most con-
venient form. In the present paper we investigate the Leibniz superalgebras with
the characteristic sequence C(L) = (n − 1, 1|m1, m2, . . . , mk) and with nilindex
equal to n + m. Actually, the classification of such superalgebras in the case where
C(L) = (n − 1, 1|m) was obtained in [3] and the main result of the present work
consist of the following fact: Leibniz superalgebras with characteristic sequences
equal to C(L) = (n− 1, 1|m1, m2, . . . , mk) (m2 �= 0) have nilindex less than n + m.

Therefore, the classification of Leibniz superalgebras of nilindex n + m and with
characteristic sequence equal to (n − 1, 1|m1, m2, . . . , mk) is reduced to the case
where the characteristic sequence is equal to (n−1, 1|m), and this case, as we men-
tioned above, has already been solved in [3]. In this way we made further step in
the solution of the problem of the classification of complex Leibniz superalgebras
of nilindex n + m.

Throughout this work we shall consider spaces and (super)algebras over the field
of complex numbers.

2. Preliminaries

We recall the notions of Lie and Leibniz superalgebras.

Definition 2.1 [9]. A Z2-graded vector space G = G0⊕G1 is called a Lie superal-
gebra if it is equipped with a product [−,−] which satisfies the following conditions:

(1) [Gα, Gβ ] ⊆ Gα+β(mod 2) for any α, β ∈ Z2,

(2) [x, y] = −(−1)αβ[y, x], for any x ∈ Gα, y ∈ Gβ ,

(3) (−1)αγ [x, [y, z]]+(−1)αβ[y, [z, x]]+(−1)βγ[z, [x, y]] = 0 — Jacobi superidentity,
for any x ∈ Gα, y ∈ Gβ , z ∈ Gγ , α, β, γ ∈ Z2.

Definition 2.2 [1]. A Z2-graded vector space L = L0 ⊕ L1 is called a Leibniz
superalgebra if it is equipped with a product [−,−] which satisfies the following
conditions:

(1) [Lα, Lβ] ⊆ Lα+β(mod 2) for any α, β ∈ Z2,
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(2) [x, [y, z]] = [[x, y], z] − (−1)αβ[[x, z], y] — Leibniz superidentity, for any x ∈ L,

y ∈ Lα, z ∈ Lβ.

Evidently, the subspaces G0 and L0 are Lie and Leibniz algebras, respectively.
It should be noted that if in a Leibniz superalgebra L the identity:

[x, y] = −(−1)αβ [y, x],

holds for any x ∈ Lα and y ∈ Lβ, then the Leibniz superidentity can easily be
transformed into the Jacobi superidentity. Thus, Leibniz superalgebras are general-
izations of both Lie (super)algebras and Leibniz algebras. For examples of Leibniz
superalgebras we refer to [1].

The set of Leibniz superalgebras with dimensions of the even part L0 and the
odd part L1, respectively equal to n and m, shall be denoted by Leibn,m.

For a given Leibniz superalgebra L we define a descending central sequence in
the following way:

L1 = L, Lk+1 = [Lk, L1], k ≥ 1.

Definition 2.3. A Leibniz superalgebra L is called nilpotent, if there exists s ∈ N

such that Ls = 0. The minimal number s with this property is called index of
nilpotency (or nilindex) of the superalgebra L.

Definition 2.4. The set R(L) = {x ∈ L | [y, x] = 0 for any y ∈ L} is called the
right annihilator of a superalgebra L.

Using the Leibniz superidentity it is not difficult to see that R(L) is an ideal
of the superalgebra L. Moreover, element of the form [a, b] + (−1)αβ [b, a] belong
to R(L), where a ∈ Lα, b ∈ Lβ.

The following theorem describes nilpotent Leibniz superalgebras with maximal
nilindex.

Theorem 2.1 [1]. Let L = L0 ⊕ L1 be a Leibniz superalgebra from Leibn,m with
nilindex equal to n + m + 1. Then L is isomorphic to one of the following two
non-isomorphic superalgebras:

[ei, e1] = ei+1, 1 ≤ i ≤ n − 1;

{
[ei, e1] = ei+1, 1 ≤ i ≤ n + m − 1,

[ei, e2] = 2ei+2, 1 ≤ i ≤ n + m − 2,

where omitted products are equal to zero and {e1, e2, . . . , en} is the basis of the
superalgebra L.

Remark 2.1. From the description of Theorem 2.1 we have that if the odd part
L1 of the superalgebra L is non-trivial, then either m or m + 1 and the table of
multiplication of the second superalgebra in a graded basis {x1, . . . , xn, y1, . . . , ym}
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can be written in the following form:

[yj, x1] = yj+1, 1 ≤ j ≤ m − 1, [x1, y1] =
1
2
y2,

[xi, y1] =
1
2
yi, 2 ≤ i ≤ m, [y1, y1] = x1,

[yj , y1] = xj+1, 2 ≤ j ≤ n − 1,

[xi, x1] = xi+1, 1 ≤ i ≤ n − 1.

Let L = L0 ⊕ L1 be a nilpotent Leibniz superalgebra. For an arbitrary element
x ∈ L0, the operator of right multiplication Rx (defined as Rx : y → [y, x]) is
a nilpotent endomorphism of the space Li, where i ∈ {0, 1}. Denote by Ci(x)
(i ∈ {0, 1}) the descending sequence of the dimensions of Jordan blocks of the
operator Rx. Consider the lexicographical order on the set Ci(L0).

Definition 2.5. The sequence

C(L) =
(

max
x∈L0\[L0,L0]

C0(x)
∣∣∣∣ max

ex∈L0\[L0,L0]
C1 (x̃)

)
is said to be the characteristic sequence of the Leibniz superalgebra L.

Similarly to [5] (Corollary 3.0.1) it can be proved that the characteristic sequence
is invariant under isomorphisms.

Further we need the following definition.

Definition 2.6. A Leibniz algebra L of dimension n is said to be filiform if dimLi =
n − i for 2 ≤ i ≤ n.

Lemma 2.1 [2]. Let L be an n-dimensional Leibniz algebra. Then the following
statements are equivalent:

(a) C(L) = (n − 1, 1);
(b) L is a filiform Leibniz algebra;
(c) Ln−1 �= 0 and Ln = 0.

Let L be a Leibniz superalgebra from Leibn,m with characteristic sequence equal
to (n−1, 1|m1, m2, . . . , mk), (where m1+m2+· · ·+mk = m). Since in [7] the Leibniz
superalgebras with characteristic sequence and nilindex equal to (n − 1, n|m) and
n + m, respectively, have already been obtained, we shall henceforth reduce our
investigation to the case where m2 �= 0.

From Lemma 2.1 we can conclude that the even part L0 of L is a filiform
Leibniz algebra. Due to the description of filiform Leibniz algebras in [6, 8, 11]
we can obtain the existence of an adapted basis in superalgebra with C(L) =
(n − 1, 1|m1, m2, . . . , mk), according to the following theorem:

Theorem 2.2. Let L = L0 ⊕ L1 be a superalgebra from Leibn,m with char-
acteristic sequence equal to (n − 1, 1|m1, m2, . . . , mk). Then there exists a basis
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{x1, x2, . . . , xn, y1, y2, . . . , ym} of L, in which the multiplication satisfies one of the
following three conditions:

(a) [x1, x1] = x3,

[xi, x1] = xi+1, 2 ≤ i ≤ n − 1,

[yj , x] = yj+1, j /∈ {m1, m1 + m2, . . . , m1 + m2 + · · · + mk},
[yj , x] = 0, j ∈ {m1, m1 + m2, . . . , m1 + m2 + · · · + mk},
for some x ∈ L0\L2

0,

[x1, x2] = α4x4 + α5x5 + · · · + αn−1xn−1 + θxn,

[xj , x2] = α4xj+2 + α5xj+3 + · · · + αn+2−jxn, 2 ≤ j ≤ n − 2,

where the omitted products in L0 are equal to zero;
(b) [x1, x1] = x3,

[xi, x1] = xi+1, 3 ≤ i ≤ n − 1,

[yj , x] = yj+1, j /∈ {m1, m1 + m2, . . . , m1 + m2 + · · · + mk},
[yj , x] = 0, j ∈ {m1, m1 + m2, . . . , m1 + m2 + · · · + mk},
for some x ∈ L0\L2

0,

[x1, x2] = β4x4 + β5x5 + · · · + βnxn,

[x2, x2] = γxn,

[xj , x2] = β4xj+2 + β5xj+3 + · · · + βn+2−jxn, 3 ≤ j ≤ n − 2,

where the omitted products in L0 are equal to zero;
(c) [xi, x1] = xi+1, 2 ≤ i ≤ n − 1,

[x1, xi] = −xi+1, 3 ≤ i ≤ n − 1,

[yj , x] = yj+1, j /∈ {m1, m1 + m2, . . . , m1 + m2 + · · · + mk},
[yj , x] = 0, j ∈ {m1, m1 + m2, . . . , m1 + m2 + · · · + mk},
for some x ∈ L0\L2

0,

[x1, x1] = θ1xn,

[x1, x2] = −x3 + θ2xn,

[x2, x2] = θ3xn,

[xi, xj ] = −[xj , xi] ∈ lin〈xi+j+1, xi+j+2, . . . , xn〉, 2 ≤ i < j ≤ n − 2.

3. On the Classification of Leibniz Superalgebras with
Characteristic Sequence (n − 1, 1|m1, m2, . . . , mk) and Nilindex
n + m (m2 �= 0).

Let L satisfy to the conditions of Theorem 2.2 and let {x1, x2, . . . , xn, y1, y2, . . . , ym}
be the adapted basis of L. It is not difficult to see that if L has nilindex equal to
n + m, then the superalgebra L has two generators (due to Theorem 2.1 we have a
description of singly-generated Leibniz superalgebras, which have nilindex n+m+1)
and dim Li = n + m − i for 2 ≤ i ≤ n + m. It should be noted that the filiform
Leibniz algebra L0 has also two generators, x1 and x2.

Lemma 3.1. In three the classes of superalgebras of Theorem 2.2 instead of the
element x one can choose the element x1.
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Proof. Without loss of generality we can assume that x has the form: x = A1x1 +
A2x2, where (A1, A2) �= (0, 0).

Let us consider the first class of superalgebras of Theorem 2.2 and investigate
three cases.

Case 1. Let A1(A1 + A2) �= 0. Then applying the following change of basis:

x′
1 = A1x1 + A2x2, x′

2 = (A1 + A2)x2 + A2(θ − αn)xn−1,

x′
i = [x′

i−1, x
′
1], 3 ≤ i ≤ n, y′

j = yj, 1 ≤ j ≤ m,

we obtain that the first four multiplications in class (a) do not change.

Case 2. Let A1 = 0. Let us make a change of basis as follows:

x′
1 = x1 + aA2x2, where a(1 + aA2) �= 0,

x′
2 = (1 + A2)x2 + aA2(θ − αn)xn−1, x′

i = [x′
i−1, x

′
1], 3 ≤ i ≤ n,

y′
j = yj , j ∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1},

y′
j = [y′

j−1, x
′
1], j /∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1}.

If we choose a sufficiently big value of the parameter a then we obtain that
the first four multiplications in the class (a) also do not change. Indeed, the first
three multiplications do not change by the construction and the products [y′

j , x
′
1]

for j ∈ {m1, m1 +m2, . . . , m1 +m2 + · · ·+mk} are equal to zero, because otherwise
we easily can get a contradiction with the characteristic sequence or nilpotence
conditions.

Case 3. Let A1 �= 0 and A1 = −A2. Then taking the following transformation of
basis:

x′
1 = A1x1 − A1x2 + ax2, x′

2 = ax2 + (a − A1)(θ − αn)xn−1, (a �= 0),

x′
i = [x′

i−1, x
′
1], 3 ≤ i ≤ n, y′

j = yj ,

j ∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1},
y′

j = [y′
j−1, x

′
1], j /∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1},

it is not difficult to check that for sufficiently small values of the parameter a the
first four multiplications in the class (a) are preserved.

Thus, we have shown that in the first case of superalgebras of Theorem 2.2
instead of element x one can choose element x1.

Let us consider the class (b) of Theorem 2.2.
If A1 �= 0, then applying a transformation of basis of the form:

x′
1 = A1x1 + A2x2, x′

2 = x2 − A2γ

A1
xn−1,

x′
3 = [x′

1, x
′
1], x′

i = [x′
i−1, x

′
1], 4 ≤ i ≤ n, y′

j = yj , 1 ≤ j ≤ m,

we obtain that the first four multiplications do not change.
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If A1 = 0, then the following change of basis:

x′
1 = x1 + aA2x2, (a �= 0), x′

2 = x2 − aA2γxn−1,

x′
3 = [x′

1, x
′
1], x′

i = [x′
i−1, x

′
1], 4 ≤ i ≤ n,

y′
j = yj , j ∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1},

y′
j = [y′

j−1, x
′
1], j /∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1},

with a sufficiently big value of the parameter a allow to conclude that first four
multiplications in class (b) do not change.

Now consider the class (c) of Theorem 2.2.
If A1 �= 0, then applying a transformation of basis of the form:

x′
1 = A1x1 + A2x2, x′

2 = x2, x′
i = [x′

i−1, x
′
1], 3 ≤ i ≤ n, y′

j = yj, 1 ≤ j ≤ m,

we obtain that the first four multiplications are preserved.
If A1 = 0, then take the transformation of basis:

x′
1 = x1 + aA2x2, (a �= 0), x′

2 = x2, x′
i = [x′

i−1, x
′
1], 3 ≤ i ≤ n,

y′
j = yj , j ∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1},

y′
j = [y′

j−1, x
′
1], j /∈ {1, m1 + 1, m1 + m2 + 1, . . . , m1 + m2 + · · · + mk−1 + 1}.

Then choosing a sufficiently big value of the parameter a allow us to conclude that
the first four products in the case (c) of Theorem 2.2 do not change.

Thus, we have proven that in the three classes of superalgebras of Theorem 2.2
instead of the element x we can choose element x1.

Since the superalgebra L = L0 ⊕ L1 has two generators the possible cases are
as follow: both generators lie in L0; one generator lies in L0 and the another one
lies in L1; both generators lie in L1.

We shall not consider the case where both generators lie in the even part (since
m2 �= 0). Firstly we consider the second possible, i.e. the case where one of the
generators lies in L0 and the another one lies in L1. It is easy to see that there
exist some mj , 0 ≤ j ≤ k − 1 (here m0 = 0), such that ym1+m2+···+mj+1 /∈ L2. By
a shifting of basic elements one can assume that mj = m0, i.e. the basic element
y1 /∈ L2. Of course, by this choice the condition m1 ≥ m2 ≥ · · · ≥ mk, is broken,
but we shall not use this condition in our study further. Thus, as generators we can
choose the elements A1x1 + A2x2 and y1.

Let us introduce the notations

[xi, y1] =
m∑

j=2

αi,jyj , 1 ≤ i ≤ n, [ys, y1] =
n∑

t=1
βs,txt,

[yp, x2] =
m∑

q=2

γp,qyq, 1 ≤ s, p ≤ m.



August 28, 2009 18:45 WSPC/171-JAA 00344

468 S. Albeverio, B. A. Omirov & A. Kh. Khudoyberdiyev

Theorem 3.1. Let L be a Leibniz superalgebra from Leibn,m with characteris-
tic sequence (n − 1, 1|m1, m2, . . . , mk), where m1 ≥ 2, n ≥ 4. Let the elements
A1x1 + A2x2, y1 be generators and x1 ∈ L2. Then L has a nilindex less than
n + m.

Proof. Since x1 ∈ L2, then x2 /∈ L2 and therefore as a generator of the L which
lies in L0 we can choose x2. Let us assume the contrary, i.e. the nilindex of the
superalgebra L is equal to n + m. Then we have

L = {x1, x2, . . . , xn, y1, y2, . . . , ym}, L2 = {x1, x3, . . . , xn, y2, y3, . . . , ym}.

Since x1 is generator in the filiform Leibniz algebra L0 then it should lie in linear
span of products [ys, y1], 1 ≤ s ≤ m. Therefore, there exists some s (1 ≤ s ≤ m)
such that βs,1 �= 0.

Denote by ym1+m2+···+mt0+1 the basic element which is the earliest
generated among the elements {ym1+1, ym1+m2+1, . . . , ym1+m2+···+mk−1+1}, i.e.
ym1+m2+···+mt0+1 is the basic element which first is absent among the elements
{ym1+1, ym1+m2+1, . . . , ym1+m2+···+mk−1+1} in the descending central sequence.
Therefore, the element ym1+m2+···+mt0+1 is generated by products of elements of
the form either [xi, y1], 2 ≤ i ≤ n or [yj , x2], 1 ≤ j ≤ m1.

Let us show that x1 /∈ L3. Indeed, if x1 lies in L3, then it should be generated
by the product [ym1+m2+···mt0+1, y1]. From the nilpotence condition we have that
x1 is generated by the products [[x2, y1], y1], [[y1, x2], y1] (since the basic elements
x3, x4, . . . , xn and y2, y3, . . . , ym1 are obtained by the products involving x1). Hence
for generating the element ym1+m2+···+mt0+1 it is enough to consider the cases where
i = 2, j = 1.

From the equalities

[[x2, y1], y1] =
1
2
[x2, [y1, y1]] =

1
2

x2,

n∑
s=1,s�=2

β1,sxs

 =
∑
t≥3

(∗)xt

(where by the symbol (∗) we denote the coefficients of the basic elements xt),
we have that the element x1 is not present in the decomposition of the product
[[x2, y1], y1]. If x1 is generated from the product [[y1, x2], y1], then the expression
[[y1, x2], y1] + [[x2, y1], y1] lies in R(L) and x1 appear in its decomposition. Using
the table of multiplication in the algebra L0 from Theorem 2.2 we establish that
multiplying the expression [[y1, x2], y1]+[[x2, y1], y1] on the right side by the element
x1 sufficiently many times we obtain xn ∈ R(L). Then repeating this procedure
finally we obtain x1 ∈ R(L). Thus, we obtain a contradiction, because x1 /∈ R(L).
Therefore, x1 /∈ L3.

Let us consider the cases (a) and (b). The condition x1 /∈ L3 leads to β1,1 �= 0.

Since in the cases (a) and (b) the elements xi, 3 ≤ i ≤ n lie in R(L), then we can
put x′

1 = β1,1x1 + β1,3x3 + · · · + β1,nxn and suppose that [y1, y1] = x1.
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Consider the subsuperalgebra generated by y1 (〈y1〉). Then it is easy to check
that 〈y1〉 = {x1, x3, . . . , xn, y1, y2, . . . , ym1}. Since this subsuperalgebra is single-
generated then from Remark 2.1 we have

[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1, [x1, y1] =
1
2
y2,

[xi, y1] =
1
2
yi, 3 ≤ i ≤ m1, [y1, y1] = x1,

[yj , y1] = xj+1, 2 ≤ j ≤ n − 1,

where if n + m1 is even then n = m1 and if n + m1 is odd then n = m1 + 1.

From above products we have [y1, x1] + [x1, y1] = 3
2y2 which yields yi ∈ R(L)

for 2 ≤ i ≤ m1.

Using the fact that in the cases (a) and (b) the product [x1, x2] belongs to R(L)
and the following equalities hold

[yi, x2] = [[yi−1, x1], x2] = [yi−1, [x1, x2]] + [[yi−1, x2], x1] = [[yi−1, x2], x1]

= γ1,2yi+1 + (∗)yi+2 + · · · + (∗)ym1 + (∗)ym1+2 + · · ·
+ (∗)ym1+m2 + (∗)ym1+m2+2 + · · · + (∗)ym,

for 2 ≤ i ≤ m1, we can conclude that ym1+m2+···+mt0+1 /∈ L3, i.e. dimL3 <

n + m− 3. Hence we obtain a contradiction with the assumption that the nilindex
is equal to n + m.

Now, consider superalgebras from the class (c) of Theorem 2.2. We have

L2 = {x1, x3, . . . , xn, y2, y3, . . . , ym},
L3 = {x3, . . . , xn, y2, y3, . . . , ym}.

Consider the equalities

[y1, x3] = [y1, [x2, x1]] = [[y1, x2], x1] − [[y1, x1], x2] =
m−2∑
p=2

γ1,pyp+1 − [y2, x2].

From the nilpotence condition of the superalgebra L it follow that in the decom-
position of the product [y2, x2] the basic element y2 does not participate, i.e.

[y2, x2] =
m∑

i=3

γ2,iyi. Therefore

[y1, x3] = (γ1,2 − γ2,3)y3 + (γ1,3 − γ2,4)y4 + · · ·+ (γ1,m−2 − γ2,m−1)ym−1 − γ2,mym.

In a similar way we obtain

[yi, x3] = (γi,i+1 − γi+1,i+2)yi+2 + · · · + (γi,m−2 − γi+1,m−1)ym−1 − γi+1,mym,

2 ≤ i ≤ m − 3.

Applying the above arguments for [yi, xj ], 4 ≤ j ≤ n we get that [yi, xj ] =∑
j≥i+2(∗)yj for 4 ≤ j ≤ n. Therefore without loss of generality one can assume
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that the expression β1,1x1 +β1,3x3 + · · ·+β1,nxn can be replaced by x1, i.e. we can
suppose [y1, y1] = x1. Consider the equalities

[x1, y1] = [[y1, y1], y1] =
1
2
[y1, [y1, y1]] =

1
2
[y1, x1] =

1
2
y2.

Since [x1, y1] + [y1, x1] = 3
2y2 ∈ R(L) and yj = [yj , x1] for 1 ≤ j ≤ m1 − 1, then

y3, y4, . . . , ym1 ∈ R(L).
Using induction and the following chain of equalities

[y2, y1] = [[y1, x1], y1] = [y1, [x1, y1]] + [[y1, y1], x1] = θ1xn,

[yi, y1] = [[yi−1, x1], y1] = [yi−1, [x1, y1]] + [[yi−1, y1], x1] = [[yi−1, y1], x1],

[xj , y1] = [[xj−1, x1], y1] = [xj−1, [x1, y1]] + [[xj−1, y1], x1] = [[xj−1, y1], x1],

we establish that

[yi, y1] = 0 for 3 ≤ i ≤ m1

and

[xi, y1] = α2,2yi + · · · + α2,m1+2−iym1 + α2,m1+1ym1+i−1 + · · ·
+ α2,m1+m2+2−iym1+m2 + α2,m1+m2+1ym1+m2+i−1 + · · ·
+ α2,m+2−iym, 3 ≤ j ≤ n.

The obtained products lead to y2 /∈ L4 and that the basic element
ym1+m2+···+mt0+1 is generated by the products [yj , x2], 2 ≤ j ≤ m1.

Since yj ∈ R(L) for 2 ≤ j ≤ m1 and the other basic elements ym1+1, . . . , ym

are generated by products of the form [[yj , x2], . . . , x2], where 2 ≤ j ≤ m1, then
{y2, y3, . . . , ym} ∈ R(L). Since [[yj , x2], y1] = [yj , [x2, y1]] + [[yj , y1], x2] = 0 and

[[[yj , x2], . . . , x2], y1] = [[[yj , x2], . . .], [x2, y1]] + [[[[yj, x2], . . .], y1], x2]

= [[[[yj , x2], . . .], y1], x2] = · · · = 0,

then we easily obtain that

[ym1+m2+···+mt+1, y1] = 0, for 1 ≤ t ≤ k − 1.

Inductively we get

[yj , y1] = 0 for 2 ≤ j ≤ m,

and that x3 does not lie in L4. Thus, we obtain that

L4 ⊆ {x4, . . . , xn, y3, . . . , ym}.
Hence dim L4 < n + m − 4, but this contradict the condition that the nilindex is
equal to n+m. Thus, in the three classes of Theorem 2.2 we obtain a contradiction
with the assumption that the superalgebra L has nilindex equal to n + m and
therefore the assertion of the theorem is proved.
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From Theorem 3.1 we can assume that x1 and y1 are generators of the superal-
gebra L.

Theorem 3.2. Let L be a Leibniz superalgebra from Leibn,m with characteristic
sequence equal to (n−1, 1|m1, m2, . . . , mk) and let {x1, y1} be generators of L. Then
the superalgebra L has nilindex less than n + m.

Proof. Let L be a superalgebra satisfying the conditions of the theorem. Then

L2 = {x2, x3, . . . , xn, y2, y3, . . . , ym}.
Since ym1+···+mt+1 ∈ L2 for any t (1 ≤ t ≤ k − 1), we can conclude that
(α1,m1+···+mt+1, α2,m1+···+mt+1, . . . , αn,m1+···+mt+1) �= (0, 0, . . . , 0) for any t (1 ≤
t ≤ k − 1). But this means that for any t (1 ≤ t ≤ k − 1) the basic element
ym1+···+mt+1 is generated by the products [xi, y1], 1 ≤ i ≤ n.

As in the proof of Theorem 3.1 denote by ym1+···+mt0+1 the basic element which
first is absent among the elements

{ym1+1, ym1+m2+1, . . . , ym1+m2+···+mk−1+1}
in descending lower sequence. Then (α1,m1+···+mt0+1, α2,m1+···+mt0+1, . . . ,

αn,m1+···+mt0+1) �= (0, 0, . . . , 0). Let f be the natural number such that
αf,m1+···+mt0+1 �= 0 and αk,m1+···+mt0+1 = 0 for f ≤ k ≤ n.

We shall prove that f. Let us suppose the opposite, i.e. f < n. Then for the
powers of descending lower sequences we have the following:

Ls = {xf , . . . , xn, yr, . . . , ym1 , ym1+1, . . . , ym1+···+mt0
, ym1+···+mt0+1, . . . , ym},

Ls+1 = {xf+1, . . . , xn, yr, . . . , ym1 , ym1+1, . . . , ym1+···+mt0
, ym1+···+mt0+1, . . . , ym},

Ls+2 = {xf+1, . . . , xn, yr, . . . , ym1 , ym1+1, . . . , ym1+···+mt0
, ym1+···+mt0+2, . . . , ym}.

From these we have that the elements {yr, . . . , ym1 , ym1+1, . . . , ym1+···+mt0
,

ym1+···+mt0+2, . . . , ym} are obtained from the products [xi, y1], f + 1 ≤ i ≤ n.

The elements {yr, . . . , ym1 , ym1+1, . . . , ym1+···+mt0
, ym1+···+mt0+2, . . . , ym}

belong to Ls+3 (because {xf+1, . . . , xm} ∈ Ls+2) and hence xf+1 /∈ Ls+3. Therefore
in the decomposition

[ym1+···+mt0+1, y1] = βm1+···+mt0+1,f+1xf+1 + · · · + βm1+···+mt0+1,nxn

we have βm1+···+mt0+1,f+1 �= 0.

Consider the equalities

[xf , [y1, y1]] = 2[[xf , y1], y1] = 2[αf,ryr + αf,r+1yr+1 + · · · + αf,m1+···+mt0+1

× ym1+···+mt0+1 + · · · + αf,mym, y1]

= 2αf,m1+···+mt0+1βm1+···+mt0+1,f+1xf+1 +
∑

i≥f+2

(∗)xi.
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On the other hand

[xf , [y1, y1]] = [xf , β1,2x2 + β1,3x3 + · · · + β1,nxn] =
∑

j≥f+2

(∗)xj .

Comparing the coefficients of the basic elements we obtain

αf,m1+···+mt0+1βm1+···+mt0+1,f+1 = 0,

which contradicts the conditions: αf,m1+···+mt0+1 �= 0, βm1+···+mt0+1,f+1 �= 0.

Thus, we get a contradiction with the assumption that f < n. Now we shall study
the case where f = n, i.e. αn,m1+···+mt0+1 �= 0. In this case for some natural number
p we have

Lp = {ym1+1, . . . , ym1+···+mt0
, ym1+···+mt0+1, . . . , ym}.

It is clear that if k ≥ 3, then dimLp+1 − dimLp ≥ 2 and we have a contradiction
with the nilindex condition. If k = 2 then the vector space generated by the elements
〈ym1+1, . . . , ym1+m2〉 forms an ideal of the superalgebra L. The quotient superal-
gebra L = L/〈ym1+1, . . . , ym1+m2〉 is also two generated and C(L) = (n− 1, 1|m1).
Now applying Lemma 3.4 from [3] we get a contradiction, which completes the
proof of the theorem.

Let us investigate the case where both generators lie in odd part of the super-
algebra L. The following theorem clears up the situation in this case.

Theorem 3.3. Let L = L0⊕L1 be a superalgebra from Leibn,m with characteristic
sequence equal to (n − 1, 1|m1, m2, . . . , mk), where m1 ≥ 2, n ≥ 3 and let both
generators lie in L1. Then the superalgebra L has nilindex less than n + m.

Proof. Since both generators of the superalgebra L lie in L1, they are linear com-
binations of the elements {y1, ym1+1, . . . , ym1+m2+···+mk−1+1}. Without loss of gen-
erality we may assume that y1 and ym1+1 are generators.

Let L2t = {xi, xi+1, . . . , xn, yj , . . . , ym} for some natural number t and let z be
an arbitrary element such that z ∈ L2t\L2t+1. Then z is generated by the products of
even an number of generators. Hence z ∈ L0 and L2t+1 = {xi+1, . . . , xn, yj, . . . , ym}.
In a similar way, having L2t+1 = {xi+1, . . . , xn, yj , . . . , ym} we obtain L2t+2 =
{xi+1, . . . , xn, yj+1, . . . , ym}.

From the above arguments we conclude that n = m − 1 or n = m − 2.

Let us consider powers of L:

L2 = {x1, x2, . . . , xn, y2, y3, . . . , ym1 , ym1+2, . . . , ym},
L3 = {A1x1 + A2x2, x3, . . . , xn, y2, y3, . . . , ym1 , ym1+2, . . . , ym},
L4 ⊇ {A1x1 + A2x2, x3, . . . , xn, y3, y4, . . . , ym1 , ym1+3, . . . , ym}.
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Applying the above arguments we get that an element from the set {y3, y4, . . . ,

ym1 , ym1+3, . . . , ym} disappears in L4. If necessary then by a shifting of basic ele-
ments we can suppose that y2 /∈ L4 without loss of the generality. Then

L4 = {A1x1 + A2x2, x3, . . . , xn, y3, y4, . . . , ym1 , ym1+2, . . . , ym},
L5 = {x3, . . . , xn, y3, y4, . . . , ym1 , ym1+2, . . . , ym}.

From these restrictions on the powers of L in the following products

[y1, y1] = β1,1x1 + β1,2x2 + · · · + β1,nxn,

[y2, y1] = β2,2(A1x1 + A2x2) + β2,3x3 + · · · + β2,nxn,

[y1, ym1+1] = γ1,1x1 + γ1,2x2 + · · · + γ1,nxn,

[y2, ym1+1] = γ2,2(A1x1 + A2x2) + γ2,3x3 + · · · + γ2,nxn,

we obtain the condition (β2,2, γ2,2) �= (0, 0).
Let us introduce the notations

[x1, y1] = α1,2y2 + α1,3y3 + · · · + α1,m1ym1 + α1,m1+2ym1+2 + · · · + α1,mym,

[x2, y1] = α2,2y2 + α2,3y3 + · · · + α2,m1ym1 + α2,m1+2ym1+2 + · · · + α2,mym.

Consider the equalities

[x1, [y1, y1]] = 2[[x1, y1], y1] = 2[α1,2y2 + α1,3y3 + · · · + α1,m1ym1

+ α1,m1+2ym1+2 + · · · + α1,mym, y1]

= 2α1,2β2,2(A1x1 + A2x2) +
∑
i≥3

(∗)xi.

On the other hand

[x1, [y1, y1]] = [x1, β1,1x1 + β1,2x2 + · · · + β1,nxn] =
∑
j≥3

(∗)xj .

Comparing the coefficients of the basic elements in these equations we obtain

α1,2β2,2 = 0.

Consider the product

[y1, [y1, x1]] = [[y1, y1], x1] − [[y1, x1], y1]

= [β1,1x1 + β1,2x2 + · · · + β1,nxn, x1] − [y2, y1]

= −β2,2(A1x1 + A2x2) +
∑
s≥3

(∗)xs.

Since [y1, [y1, x1]] = [y1, y2] then [y1, y2] = −β2,2(A1x1 + A2x2) +
∑

s≥3(∗)xs.
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From the following the chain of equalities

[y1, [x1, y1]] = [[y1, x1], y1] − [[y1, y1], x1]

= [y2, y1] − [β1,1x1 + β1,2x2 + · · · + β1,nxn, x1]

= β2,2(A1x1 + A2x2) +
∑
t≥3

(∗)xt

and

[y1, [x1, y1]] = [y1, α1,2y2 + α1,3y3 + · · · + α1,m1ym1

+ α1,m1+2ym1+2 + · · · + α1,mym]

= −α1,2β2,2(A1x1 + A2x2) +
∑
p≥3

(∗)xp

we obtain the restriction β2,2 = −α1,2β2,2.

Taking into account the condition α1,2β2,2 = 0 we get β2,2 = 0. Consider

[y1, [ym1+1, x1]] = [[y1, ym1+1], x1] − [[y1, x1], ym1+1] = [γ1,1x1 + γ1,2x2 + · · ·
+ γ1,nxn, x1] − [y2, ym1+1] = −γ2,2(A1x1 + A2x2) +

∑
q≥3

(∗)xq .

On the other hand we have [y1, [ym1+1, x1]] =
∑

l≥3(∗)xl. Comparing the coefficients
of the basic elements we get γ2,2 = 0, which contradicts the condition (β2,2, γ2,2) �=
(0, 0). Hence, we have L3 = {x3, . . . , xn, y2, y3, . . . , ym1 , ym1+2, ym1+3, . . . , ym}, i.e.
A1x1 + A2x2 /∈ L3. Therefore the nilindex of the superalgebra L is less than
n + m.

The investigation of the cases where L is a Leibniz superalgebra with charac-
teristic sequence (n − 1, 1|m1, m2, . . . , mk), where either m1 < 2 or n < 4, give us
the same result. Considering these cases consist is a simple routine work, mainly
repeating the above technique, hence we omit details for these cases.
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[8] J. R. Gómez and B. A. Omirov, On classification of complex filiform Leibniz algebras,

arxiv:math.RA/0612735v1.
[9] V. G. Kac, Lie superalgebras, Adv. Math. 26(1) (1977) 8–96.

[10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz,
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