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1. Introduction

Leibniz algebras, a “noncommutative version” of Lie algebras, were first introduced in the mid-
1960s by Blokh [5] under the name of “D-algebras.” They appeared again in the 1990s after
Loday’s work [12], where he introduced calling them Leibniz algebras.

According to the structural theory of Lie algebras, a finite-dimensional Lie algebra can be writ-
ten as a semidirect sum of its semisimple subalgebra and its solvable radical (Levi’s theorem).
The semisimple part is a direct sum of simple Lie algebras which were completely classified in
the fifties of the last century (see [9]). In the case of Leibniz algebras, there is also an analog to
Levi’s theorem [3]. Namely, the decomposition of a Leibniz algebra into the semidirect sum of its
solvable radical and a semisimple Lie algebra can be obtained. As above, the semisimple part can
be composed by simple Lie algebras and the main issue in the classification problem of finite-
dimensional complex Leibniz algebras is to study the solvable part. Therefore, the classification of
solvable Leibniz algebras is important to construct finite-dimensional Leibniz algebras.

Owing to a result of [13], an approach to the study of solvable Lie algebras through the use of
the nilradical was developed in [2, 14, 17], etc. In particular, in [14] solvable Lie algebras with
abelian nilradicals are investigated.

The analog of Mubarakzjanov’s result has been applied in the Leibniz algebra case in [7],
showing the importance of consideration of the nilradical in the case of Leibniz algebras as well.
The papers [6, 7, 11, 15, 16] also are devoted to the study of solvable Leibniz algebras by consid-
ering their nilradicals.
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It should be noted that any solvable Leibniz algebra L with nilradical N can be written as a direct
sum of vector spaces L = N @ Q, where Q is the complementary vector space to the nilradical. In
[1, 4], solvable Leibniz algebras with an abelian nilradical are investigated. It was proven that the
maximal dimension of a solvable Leibniz algebra with k-dimensional abelian nilradical is 2k.
Additionally, in [1] this maximal case was classified and some results regarding of the classification
with one-dimensional extension were presented. In this paper, we give the classification of solvable
Leibniz algebras with abelian nilradical and (k — 1)-dimensional extension.

It should be noted that a solvable Leibniz algebra L with condition dimQ = dim(N/N?) can
be classified using the classification of solvable Leibniz algebras with a k-dimensional abelian nil-
radical and a k-dimensional complementary vector space.

The natural next step is the classification of solvable Leibniz algebra with condition dimQ =
dim(N/N?) — 1. In order to perform this classification, the classification of solvable Leibniz alge-
bras with a k-dimensional abelian nilradical and a (k — 1)-dimensional complementary vector
space should first be obtained. In the case k=2 and k=3 we have three- and five-dimensional
solvable Leibniz algebras, which were classified in [8] and [10], respectively. In this paper, we
consider the case for any k, ie., we classify all (2k — 1)-dimensional solvable Leibniz algebras
with k-dimensional abelian nilradical.

Throughout this paper all algebras (vector spaces) considered are finite-dimensional and over
the field of complex numbers. Also, in the tables of multiplications of algebras, we give nontrivial
products only.

2, Preliminaries
This section is devoted to recalling some basic notions and concepts used throughout the paper.

Definition 2.1. A C-vector space with a bilinear bracket (L, [-,-]) is called a Leibniz algebra if for
any x, ¥,z € L the so-called Leibniz identity

o2l = (o214 — [P 2]
holds.

Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, there exists

the version corresponding to the left Leibniz identity
B2 = [ 7)) — 2]

Note that the notions of ideal and subalgebra are defined by the usual way. The sets Ann,(L):
={x€L:[L,x] =0} and Anmy(L) := {x € L: [x,L] = 0} are called the right and left annihilators
of L, respectively. It is observed that Ann,(L) is a two-sided ideal of L, and for any x,y € L the
elements [x,x] and [x, y] + [y, x] are always in Ann,(L).

The set C(L) := {x € L : [x,L] = [L,x] = 0} is called the center of L.

For a given Leibniz algebra (L, [+, -]) the sequences of two-sided ideals is defined recursively as follows:

LY=L 0" = [I5 L], k> 1, (W=t = I8 L], s > 1.
These are said to be the lower central and the derived series of L, respectively.

Definition 2.2. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there exists
n € N (m € N) such that L" = 0 (respectively, Lim = o).
Definition 2.3. An ideal of a Leibniz algebra is called nilpotent if it is nilpotent as a subalgebra.

It is well-known that the sum of any two nilpotent ideals is nilpotent. Therefore the maximal
nilpotent ideal always exists.
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Definition 2.4. The maximal nilpotent ideal N of a Leibniz algebra L is said to be the nilradical
of the algebra.

Definition 2.5. A linear map d : L — L of a Leibniz algebra (L, [-,-]) is said to be a derivation if
for all x,y € L, the following condition holds:

d([xy]) = [d(x),y] + [xd(y)].

The set of all derivations of L is denoted by Der(L) and it is a Lie algebra with respect to
the commutator.

For a given element x of a Leibniz algebra L, the right multiplication operator R, : L — L,
defined by R.(y) = [y,x],y € L is a derivation. In fact, Leibniz algebras are characterized by this
property regarding right multiplication operators. (Recall that left Leibniz algebras are character-
ized by the same property with left multiplication operators.) As in the Lie case, such kind of der-
ivations are said to be inner derivations.

Definition 2.6. Let d;,d,, ..., d, be derivations of a Leibniz algebra L. The derivations d;,d,, ...,d,
are said to be linearly nil-independent if for oy, o, ..., o, € C and a natural number k,

(ondy + oady + - - - + atyd,,)* = Oimplies oy = 0y = -+ = 0, = 0.

Note that in the above definition the power is understood with respect to composition.

Let L be a solvable Leibniz algebra. Then it can be written in the form L = N © Q, where N
is the nilradical and Q is the complementary vector subspace. The following is a result from [7]
on the dimension of Q which we make use of in the paper.

Theorem 2.7. Let L be a solvable Leibniz algebra and N be its nilradical. Then the dimension of Q
is not greater than the maximal number of nil-independent derivations of N.

3. Main result

We denote by ay a k-dimensional abelian algebra and by R(ay,s) the class of solvable Leibniz
algebras with k-dimensional abelian nilradical N and s-dimensional complementary vector
space Q.

As above, it has been proven that s < k for any algebra from the class R(ay,s), and in [1] the
classification of such algebras of R(ax, k) is given. It is proven that an arbitrary algebra from the
family R(ax,k) can be decomposed into a direct sum of copies of two-dimensional non-trivial
solvable Leibniz algebras.

It is proven that an arbitrary algebra L from the family R(ay, k) is

L:lz@lz@"'@b@h@h@"'@Tz,

where ) : [e,x] =eand ry : [e,x] = —[x,¢] = e.

Let L be a Leibniz algebra from the class R(ax, k — 1). Take a basis {e1, €2, ... €, X1, X2, oy Xk 1 }
of L such that {ej,e;,...,ex} is a basis of nilradical N and {x1,x2,...., X1} is a basis of the com-
plementary vector space Q. It is known that the right multiplication operators Ry ,Rs,,....Ry , :
N — N are nil-independent derivations [7] and there exists a basis of N, for an easier notation,
suppose again {ej, e, ...,ex}, such that operators Ry ,Ry,, ..., Ry, | simultaneously have the Jordan
normal form.
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Because of this, observe that:
e X)) = aijei + B jeiv, 1<ij<k—1,
[ex> Xj] = Ak, jex 1<j<k—-1,

where a; ; are eigenvalues of the operator Ry and f; ; € {0,1}
Since Ry, Ry,, ..., Ry, , are nil-independent we have that

a1 ap2 a k-1
az1 @,2 az k-1
rank =k—1.
ak—-1,1  Ok-1,2 Ak—1,k—1
Ak, k—1

ag,1 ag,2
of order kK —1 which has a non-zer

Thus, there exists a minor MY .
Mk lt Lt+1....x) 7 0. Making the change of basis

o determinant, i.e.,

there exists ¢ such that det(

el—en 1§1§t—1,
€=ey, t<i<k-—1,
€, = e,
we get that
1<ij<k—-1i#t—1,

[ei» X)) = aijei + B jeir1,

[er—1, %] = a-rje1 + Py je, 1 <j<k—1,

[ex> Xj] = ax,jex + P jer 1<j<k—-1
It should be noted that operators Ry, Ry, ..., Ry, , can be considered linearly nil-independent
operators on the quotient vector space ai/{ex). Since dim(ax/{ex)) =k — 1 from the result of [1]

we obtain that
1<i<k—1, a;=0 1<ij<k—1 i#j,

Bij=0, 1<i<k 1<j<k-1, i#t-1

Let us introduce the following notation:

[xi» €] = Z,}pep, 1<i<k-1,

a,; =1,
1<j<k

[xi %] = Zéz;ep 1<ij<k-1,
p=

where yp i€ C.
Using the similar algorithms of the proof of Theorem 3.2 in [1], which was given the classifica-
tion of solvable Leibniz algebras R(ax, k), from Leibniz identities and basis changes we obtain that

% =0, 1<ijp<k—1, i#j#p,

7 € {0, — 1},
&.=0, 1<ijp<k-—1

1<i<k-—1,
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Therefore, the multiplication of the (2k — 1)-dimensional solvable Leibniz algebras with k-
dimensional abelian nilradical N has the following form:

[eixi] = ei + B iexs 1<i<k-1,

e Xj] = Bi jexs 1<i<k 1<j<k-—1, i#j

[xiei] = oiei + 7560 1 <i<k-—1,

Rlagk — 1) = { [%i¢] = Vijew 1<i<k—-1, 1<j<k—-1, i#j (3.1)

k

[xiaek]:ZVi,jeja 1<i<k-—1,
=1

Xi> Xj| = 04, j€k> SLps k=1

[%i> X;] = i 1<ij<k—1

where o; € {0, — 1}.
First we investigate the case of o; =0 forall 1 <i <k —1.

Theorem 3.1. Let L be a Leibniz algebra from the class R(ax,k — 1) and let o; =0 for 1 <i <
k — 1. Then L is isomorphic to one of the following algebras:

gy E e rsrs ke ) e = B l<icko1,
[ekaxi]:ﬁiek’ lglék_ly

[e1,x1] = e1 + ek e xi] = e 1<i<k—1,
Ly(B) : [ei» xi] = ei> 2<i<k-—1, L) [ex X1] = ek
7 e xi] = Bie 2<i<k-1, T ] = —en
(e 1] = ek xne] =vie, 2<i<k-—1,

e xi] = eis 1<i<k-1,
L 5," :
5(0i ) ) = dije, 1<ij<k—1

Proof. Let o; =0 for 1 <i <k — 1, then the multiplication (3.1) has the form
[ei,Xi] =e + ﬁi,iek) 1 S i S k— 1,

[eiaxj]:[))i,jek: 1<i<k 1<j<k—-1, i#j
Xi> €j| = Vi i€k> S1s - 1 >)] > — L

[Xi» €] = 7, 1<i<k-1, 1<j<k-1

[ €] Zvuep 1<i<k-1,

[X,‘,Xj] = 5,"]‘61(, 1< i,j <k-1.

Case 1. Let there exist iy € {1,2,...,k}, such that f;; & {0,1}. Without loss of generality, we
may assume 7o = 1. Making the change of basis

ﬂll / ﬁl

€. =€ — ﬁ
k1

Brr = i

€, =e — 2<i<k-1,

we get
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ﬁl,l
Br1 =

_
1 e = €.
k1

] = [ -

B
ek, X1 :el+ﬁ1,1ek_4l’l Briex =e —
B —1

el x1] = [ei —g}:%’,llek,xll =Pirex—Piex=0 2<i<k—1
Thus, we obtain that [e;,x;] =e; and [e;, %] =0 for 2 <i<k— 1. Then using the Leibniz
identity for 2 < i,j(i # j) < n, we have:
0 = [ei [x1,X)]] = [[enx1)> X)) — [[enx],x1] = —Bi j[ew-x1] = =P jBr. 1€k
0= [g) [x1,x5]] = [[e1]> 5] — [[epxi]> 1] = = [¢& + By e ] = =By e
Hence ﬁi,jﬁk,l =0, ﬁj,jﬁk,l = 0. Since f8; | # 0, we get that
Bi;j=0 2<i<k-1, 2<j<k-L
Next we consider
0= [en, fro ]| = [[enxi], %] — [[enxi]1) = [er, 5] — [Bujew 1] = Bujex — BuiBirex = Buj(l = Beye

Since fi | # 1 we get f; ; = 0 for 2 < j < k — 1. Thus, the multiplication has the following form:

[e,-,x,-]:e,-, 1Sl§k*1,

[ekaxi} :ﬁk,ielo 1§l§k_ 1;

Xis €] = Vs €k, 1<i<k-1, 1<j<k—-1,
[ ]} /1] J

[xi, ex] Zv,]e], 1<i<k-1,
j=1
[X,',Xj] = (31')]‘6]{, 1< 1,] < k—1.

Now we consider the Leibniz identity for the triple of elements {xi»ejpx1} for1<i<k-1
and 1 <j <k —1. Then

0 = [x;, [er, x1]] — [[%i> e1]> %1] + [[xis X1 €1] = [xisex] — Vi 1[erx1] = Vi1 (1 — B 1)ews
0= [xi, [ej,xl]] - [[x,-, ej],xl} + [[xi,xl],ej] = _Vi,j[ek:xl} — _Vi,jﬁk,leb 2<j<k-1.

Since fi; ¢ {0,1}, we have y;; =0 for 1 <i,j <k—1.
Using the Leibniz identity, we have:

0 = [, [exs x1]] — [ el 1] + [[io 1], e8] = B, 1 ] — sz]epxl

k k-1
= ﬂk,1ZVi,jej —viper = VigPy ek = (B — Dvirer + ﬁk,lz’/i,jej-
=1 =2

Hence v;j =0 for 1 <i,j <k—1.
From

0 = [x;, [xj ex]] — [[%i> X] ex] + [[Xi> k], Xj] = v k[Xi> €] + Vik[er> Xj] = Vik(Vjk + Brj)exs
we get

VikWik+ Bej) =0, 1<ij<k—1. (3.2)
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Taking the basis change x} = x; — %ek for 2 <i<k—1, we obtain

[x;,xl] = [x,- — Eek,xl] =01 — 01k =0, 2<i<k-1.
B
Thus, we can assume 6;; =0 for 2 <i<k—1.
Using the Leibniz identity
0 = [x;, [x1,x1]] — [[x5 2], 1] + [[x5 2], 1] = 51,1[xi>ek] =V k01,16
we have
Vo1 =0, 1<i<k-—l. (3.3)
Another application of the Leibniz identity gives:
0 = [xi> [} x1]] — [[%i> Xj]> %1] + [[%i> X1]> %] = —04,j Bk 1€k

which implies d;; = 0 for 2 <i,j <k — L.
From

0 = [x1, [xj, x1]] — [[¥1, Xj], X1] + [[x1, %1], 5] = —0uj]ews x1] + O,1[ew %] = (—01,jBk 1 + 01,18k ) e

we have 0, ; :%51,1 for2<j<k-1

Therefore, we have the following table of multiplications:

[ein Xi] = e;, 1<i<k-—1,
[ek’xi] = ﬁk,iek) 1 S i S k— 1,
[Xi> ] = Vi kek 1<i<k-1,

[xl’x]] ﬂ 51 1€k> 1 S_] S k—1.

Bir

Let v;, = 0 for all i(1 <i <k —1). Then taking the change x] = x; — 2’:1(_’16" we have:

o1 0
[xllaxll] = lxl lek>x1 _1€k] :51,1€k*51,1€k:0
Bi.1 B
01,1 B, 01,1
Xoxi| = |x1 — e x; =151 1ex — =P e = 0.
[1 ]] [1 Bi ]] ﬂkl b Bi1 ki

Thus, we obtain the algebra L,(f;), with 5, & {0,1}.

Let there exist i(1 <i < k— 1) such that v;; # 0. According to the equalities (3.2) and (3.3)
we have v, = —f; and 6;,; = 0, which implies that §, ; =0 for 2 < j < k— 1. Thus we have
the algebra L,(f;), with 8, € {0,1}.

Case 2. Let fy 1, Br - Brir €{0,1} and (By 15 Bras - Brk_1) 7 (0,0,...,0). Without loss of
generality, rearrange the basis elements such that the non-zero f ; are the first s, where 1 <s <
k — 1. So we have ﬂk,j: L1 <j<sand ﬁk,jzo,s+1§j§k—1.
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In this case the table of multiplication (3.1) is

leinxi]| =ei+ Bie, 1<i<k-—1,

[ei» Xj] = [)’,»jek, 1<i<k-1, 1<j<k—-1, i#j,
[ek> Xj] = ek 1<j<s5,

[xl,e]]—y,]ek, 1<i<k-—1, 1<j<k—1,

xlaek lel]e]a 1§1§k71>

[X,‘,Xj] = 51',1'8]{, 1 S 1,] S k—1.
Changing the basis, let ¢, = ¢; — f5; jex for 2 <i < k — 1 we have
[ehx1] = [ei = Birewx1] = Birex — Bk =0, 2<i<k—1.

Thus, we may suppose f;; =0, 2 <i<k—1.
Using the Leibniz identities

0 = [ess [xi 1)) — [[eir Xi] %1] + [[en x1) 1] = — [e; + B jewo 1] = — By e
0 = [ei, [xj> x1]) — [[e»Xj]> X1] + [[ei» X1], x]] = — B jex

we have ﬁ,»)j =0for2<ij<k-1.
Next, from

0 = [xi» [ej> x1]] — [[xi> €], X1] + [[%i X1], ] = =y j[ews X1] = =i jeks

we obtain y;; =0for 1 <i<k-12<j<k-1
First, consider:

0 = [x1, [er, x1]] — [[x1> €], x1] + [[x1, x1]> €] = [x1, €x] Zvue],xl =

k
g vijej — vii(er + By ex) — viker = Vi€ + -+ Viko1ek-1 — Vi1 e

Hence
Vl,lﬂl,lzoa l/l,,‘:O, Zgzgk—l

Now consider the Leibniz identity for the triples {x;, ek, x;} and {x;, ex,x1} with 2 <i <s. We

have
k
0 = [x;, [ex> xi]] — [[%i> ex]> xi] + [[%i> Xi]» ZM]@J Zyi,jej,xi =
=1
k k=1
= ZVi,jej — Vi1 By iek — Vi€ — Viker = Z vijej — Vi1 Py, ek
=1 =L

which implies
Vig =+ = Vji1 = Viig1 = -+ = Vi1 = 0.
Next from
0 = [xi> [ex> x1]] — [[xi> e x1] + [[Xi> X1]> €] = [xis k] — [Vi,iei + Viker X1] = Vi, ieis

we get v;; = 0 for 2 < i <s. Thus, we obtain [x;, ex] = v;xex for 2 <i <s.
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For s+1<i<k—1, we have

0 = [x;, [ex, xi]] — [[xi> ex]> xi] + [xi xi], € [Zu,]ej,x,} = —vi 1Py, e — Vi i€

k-1
0 = [x;, [ex, x1]] — [[xi> €], x1] + [[xi x1), ex] = [ ex] {Zu,]e],xl] = g vijej — Vi1, 1€k
=

which implies
Vi,lﬂl,izo’ y,-,lﬁM:O, Vi)]':o for S<l§k—1, ZS_]Sk—l

Hence [x;, ex] = virer +vikep fors+1 <i<k—1.
With the basis change x} = x; — ; 1€, for 2 <i <k — 1 we have:

[X;JCl] = [x; — i1, x1] = 0.
Then, from
0 = [xi> [} x1]] — [[XXj]> X1] + [[Xi» x1)> %] = —0ij[ew x1] = —0jjexs

we obtain d;; = 0 for 2 < i,j < k—1.
Therefore, the table of multiplications is:

[

e xi] = ei 2<i<k-1,
e, xj] = By jexs 2<j<k-1,
[ek>x]] = €k 1 S] S S,
[x,,el] = Vi 16k 1<i<k-1,

[xnek] = Vj k€ 2<i<s,
[Xi,ex] = viier +viker, s+1<i<k-—1,
[x1,Xj] = O1,j€k 1<j<k-1,

where v 1, , =0, v;1,, =0, fors <i<k-—1

Case 2.1. Let s > 2, then using the Leibniz identities

0 = [er, [x, x2]] — [[er, 1], x2] + [[ers %], 1] = —[er + By rews %] + B sensxi] = =By, e

0 = [e1, [xi %2]] — [[er, xi], x2] + [[en, 2], xi] = =By ilews %] + Brolew xi] = (—Bri+ Bro)e 2<i<s
0 = ler, [x;, x2] = [[er, 53], 2] + [[er, %), %] = =Py jlews x2] + B olex] = —Prjee s+1<j<k-1,
0 = [x1, [ex, %2] — [[x1> e, x2] + [[x1, x2), ex] = [x1, €] — [v1,181 + vi ke x2] = vi1er — vi1 B sen

0 = [x;, [er> x2]] — [[xi> €], x2] + [[xi> %2]s €] = [xir €] — [virer + Vikew x2] = virer — viifrqee s+1<i<k—1,

we obtain

ﬁl,lzo’ ﬁl,i:ﬁl,Z’ 2<i<s, ﬁl,jzo’ s+H1<j<k-1,
1/1,120, Z/i,1:0, S+1§1§k—l

Making the basis change €| =e; — ff; ;ex we obtain [e;,x;] =0, 2<i<s, and from the
Leibniz identity

0 =[x, [er, x2]] — [[xi» 1], x2] + [[xi> 2] €1] = =i 1[en X2] = —Pire0 1 <i<k-—1,

we get
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7 =0, 1<i<k-—1
Thus we have:
[ei» xi] = e, 1<i<k-—1,
[ex> %] = ek 1<j<s
[Xiex] = viker, 1<i<k-—1,
[xl,xj]zél,jek, 1<j<k—-1

Case 2.1.1. Let ¢ € Ann,(L), then v;, =0 with 1 <i<k—1. Making the change x| =
X1 — 01,16k, we may assume that 6;; = 0. Then from the Leibniz identity

0 = [x1, [ X1]] — [[¥1 %] X1] — [[x1, %1]> 5] = —Ouj[e, 1] = —O1jek, 2<j<k—1,
we get 51,j =0 for 2 <j <k —1 and we obtain the algebra

Li(f;), with f;=1for 1<i<s and f;=0fors+1<i<k-—1.
Case 2.1.2. Let ¢; & Ann,(L). Since the following elements

[x1, %] + [xi> x1] = 01, ik [x1,%1] = 01,16k
[Xi»ex] + [er 2] = (Vik + e, 1<i<s,
[xi> ex] + [ex> Xi] = Vi ke s+1<i<k-1,

belong to the right annihilator, we deduce
S1.i=0, 1<i<k—1 wvie=-1, 1<i<s,  v;=0 s+1<i<k-1L
Thus, in this case we obtain the algebra

Ly(p;), with f;=1for 1<i<s and f;=0fors+1<i<k-—1.

Case 2.2. Let s=1, then we have the following table of multiplication

ler, x1] = er + By 1€k

i xi] = e 2<i<k-1,
[e1> %] = By, ek 2<j<k-1,
e x1] = e

[Xi>e1] = 7;1€k 1<i<k-—1,
[xioex]) = virer +viker, 1<i<k—1,
[*1,% ]*511610 1<j<k—1,

where v1,, =0, v;1f,, =0, fors <i<k-—1

Case 2.2.1. Let ¢ € Ann,(L). Then v;; = v;; =0 with 1 <i<k—1. Next, [x1,e1] + [e1,x1] =
er+ (P11 +7y11)ex € Ann,(L). Since e € Ann,(L) we have e; € Ann,(L). Hence y;; = 0.
Performing a basis change x] =x; —0y,1ex we get [x],x]] = [x1 — 01,160 %1 — I1,16¢] = O.
Thus, we may assume 6;,; = 0. Using the Leibniz identity:
0 = [x1, [xj, X1]] — [[X1> %], 1] + [[x1, X1]> %] = 01, j€ks

we derive ¢;; = 0 for 2 < j < k — 1, from which we obtain the algebra Ls(f;).
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Case 2.2.2. Let ¢x & Ann,(L). Then since the following elements
[en> %] + [x), €1] = (Buj+7i1)ew  [x1,x] = 01,1ek [X1 %] + [Xp %] = 01, jex
belong to the right annihilator, we deduce
pu=-b; 2<j<k—1,  4,;=0 1<j<k-1.
From the Leibniz identities
0 =[x [e1, 1] — [[%i> e1]> x1] + [[Xi> X1], e1] = =By sex + Bi 1 (Virer + viker) + Py iex = B (viner + vikex),
0 = prier, 5] = [pnen) 5] + [[x ) 1) = Bus(vinen +viser), 2<j<k—1,
we obtain
Buvii =0, Prvix=0 1<i<k-11<j<k-L
Suppose there exists a j € {1,2,...,k — 1}, such that §; ; # 0. Then v;; = v;, =0 for 1 <i <

k —1 which implies that e € Ann,(L). This contradicts the assumption that e & Ann,(L).
Therefore, 5, j= 0 for 1 <j <k — 1. Thus we have the multiplication:

[eixi] = e 1<i<k-1,
[ex> X1] = ex,
[xlael} = 71,16k
[xiex] = viien +viker, 1<i<k-—1
Using the Leibniz identity, for 2 <i <k — 1, we get
0 = [x;, [Xi» ex]] — [[i> %] €] + [[Xi> ek]> %] = [Xi> Vi1€1 + Vikex] + [Vi1€1 + Vikew Xi] = Vi k(Vi1e1 + Vi kex).
This implies that v, =0 for 2 <i < k.
We also have
[ + [ e)s x1]) = 7y vnier + 70 (1+ viker
=[x, [x1, &) — [[xl,xl] } + (el ] = vk + Der + (V71 + v+ 1))er
[ + [[x1 €] Xi] = viayyie  for 2 <i <Kk,
+

[xi>ex]s x1] = vin(vik + 1)es

Thus,
YY1 =0, 711+ v1k) =0,
vii(ve+1) =0, vik(vie+1)=0,
1/,-,1))1,120, Vi,l(lll’k—Fl) 0 ZSISk—l

If vk =0, then y; ; =v;; =0 for 1 <i<k—1, which implies that e € Ann,(L). This is a
contradiction with assumption that e; & Ann,(L). Thus, vy = —1.

If y,; #0, then v;; =0 for 1 <i<k— 1. The table of multiplication (3.1) multiplication is
as follows:
elaxl}_en ISISk_l)
€k> xl] = €k
X15 el} = V1 lek’

X1, ex] =

[
[
[
[
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Making the basis change e] = e; + 7, ,ex we have the algebra
Li(p;), with fy=1 and f;=0for 2 <i<k-—1.

If y;,; = 0, then we obtain the algebra Ls(v;).
Case 3. Let ;| = By, = -+ = Brx_1 = 0. Then the multiplication is:

leisxi] = e+ Bie, 1<i<k—1,
[ei)xj] = /3i)jek) 1 S 1)_] S k - 1)17&]>
[Xi> €] = Vi j€ks 1<ij<k-—1,

k
roe] =Y vije,  1<i<k—1,
j=1

[xi> %] = 0i, jes 1<ij<k-—1.

From the Leibniz identity
0 = [en [x)> xi]] — [[enXj]> Xi] + [[en Xi)> X1 = B jexs
we have
:Bi,j:O) ISi,jSk— L, 17é]

Then making the change € = ¢; + f§; ;ex for 1 <i <k —1, we get
[e;,xi] = [ei + [3,-),»ek,xi] =e.

Thus, we may suppose ;; =0 for 1 <i<k—1.
Notice that

0 = [xi» [ex» Xj]] — [[xi> ex]> %] + [[*i> Xj]> €] = — Vi jej

implies that v;; = 0 for 1 <i,j < k — 1. This gives [x;, ex] = vjrex for 1 <i <k—1.
Using the Leibniz identity, we have:

0 = [xi» e 5] — [[xi» €] %] + [[%i> %] €] = Vi jeo
0= [xi, [xi ex]] — [[xi X ex] + [[xin €] i) = V7 ek

which implies that y; ; = v, =0for 1 <i,j <k-—1.
Our final multiplication is:

(5 [ebxi]:ei’ ISISk—l,
5(04) : %] = dijer, 1<ij<k-—1.

|

Now we give the description of solvable algebras R(ax,k— 1) in the case of o; = —1
for1 <i<k-1.

Theorem 3.2. Let L be a solvable Leibniz algebra from the class R(ax, k — 1) and o; = —1 for 1 <
i <k —1. Then L is isomorphic to one of the following algebras:
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[ei»xi] = e 1<i<k-1 [eixi) = € Isisk-1,
Py e Xj] = @% 1<j<k-1,
Lﬁ(ﬁ]) [Ek,.x]] ﬁ]‘eks 1 S] <k- L L7(ﬁ]) [ ] 1<i<k-1
el =—e, 1<i<k-—1, )
[.X't 61] €;j S [ ]:—ﬂjek) ]_S]Sk—l)
[er, x1] = er + Pexs
[el)x]_ela ZSISk_1>
[ei7~xi] =€ 1 S i S k— 1) [ely-xl} ﬁ;ek) 2 S i S k— 1)
€k> X1| = €k €k> X1| = €k
Lo(n,) - [ ]_ . L, ) leenl=
[xie] = —e, 1<i<k-—1, [x1,e1] = —e1 — Biek
[xi)el]:’yiek) ZSZSk_l) [xl’el] ZSISk_1>
[x,,e} ﬁzelo 2§l§k_1>
[x1, ex] = —ex.
[ei)xi]:eii lélgk_l,

Lio(0;j) : § [xine] =—e, 1<i<k-—1,
[xi,xj] = 5,‘)]‘(2](, 1 S l,_] S k—1.

Proof. Let a; = —1 for 1 <i < k— 1, then the multiplication (3.1) has the form

[ei,x,-] =e + ﬁi,iek’ 1 S i S k— 17

[ei,xj]: i,jek’ léigka IS]Skil’ i%]’

[X,', 61'] = —e; + yi,iek’ 1<i< k— 1,

[Xis €] = 7, j€s 1<i<k-1, 1<j<k—-1, i#}j
k

oo = ) vije,  1<i<k—l,
=1

[xi,xj] = (S,‘,]‘Ek, 1< i,j <k-1,

Let there exist iy € {1,2,...,k}, such that f ;, & {0,1}. Without loss of generality, we may
assume iy = 1. Making the change of basis

ﬁl,l / ﬁ

ek €, =e —
B — ' Bi

we get [e],x1] = ¢} and [¢},x;] = 0 for 2 < i < k — 1. Thus, we may suppose

pii=0 1<i<k-1

e =e — 2<i<k-1,

Consider the Leibniz identities

0 = [e1, [x1, %)) = [[er> x1]s 5] — [[er> Xj]> x1] = [en> %] — [ﬁl,jekvxl} = Bu,jex — B iBrrex = PBr;(1 — B 1)ew
0 = [e [x1, x]] = [[enx1)> %] — [[en %], X1] = =B jlew x1] = =B P& 2 < i,j(i #£j) <mn,
0 = [¢ v x]] = [[epx1]- 5] — [[ep5] 1] = —[¢ + Bjjen ] = = Braew 2<j<n.

Since fi;, ¢ {0,1}, we get that
ﬁ1,j:0a2§j§k—la
Bii=02<i<k-1,
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Now we consider the Leibniz identity for the triple of elements {x;,¢j,x;}. Then

0= [xu, e, x]] — [[xi e, x] + [xux e] = [y e] = [—en + py e %] = 7y (1= Bri)ew
0 =[x [er, x1]] — [ e1]s 1] + [ x1]s @] = [Xbe1] = Via[ewX1] = 751 (1 = Ber)ew 2<i<k—1,
0 = [xis [es x1]] — [[xi €], x1] + [0 X1] €] = [ei — V580 %1) = —Viibie 2 <i<k—1
0 =[x [ X1]] — [[Xi €] %1] + [Xpx1]s 6] = =7 jlex1] = =V jBrie 1<i<k—-1,2<j<k-1
Since f;, & {0,1}, we have
7,j=0, 1<ij<k-1L

Using the Leibniz identity, we have:

k
0 =[x [ewo 1] — [[xo e 1] + [k 31 ] = Bia [ es] = | D_vijep
=1

k k—1
= By _vij¢ — Virer — VikBaek = (B — Dviien+ By > _vije;.

= =

Hence
vj=0, 1<ij<k—1
From
0 = [xi» [x)» ex]] — [[Xi> Xj] €] + [[Xi» €x]> Xj] = Vj.[Xi> €x] + Vik[ewo Xj] = Vik(Vjik + Prj)ews
we get
vik(Wik + ;) =0, 1<ij<k—1 (3.4)

Taking the basis change x} = x; — g;—’llek for 2 <i<k—1, we obtain

Bra

o;
(x| = [x,- —iek,xll =0i1ex — 016 =0, 2<i<k-1L

Thus, we can assume
§i1=0, 2<i<k-—1l.
Using the Leibniz identities
0 = [xi, [x1, x1]] — [[xix1], X1 + [[%0x1], %1] = 51,1[xi>ek] = V;, k01, 1€k

0 = [x1, [xp xa]] = [[xx] 1] + ([ 21). ] = —0u,j[ew 1] + duafer x5 = (=01,ifi 1 + 0n1h ek

0= [xi) [x])xl]] - Hxl',xj},XI] =+ [[xi’xl])xj] = _6i,jﬁk,lek)
we have
Vi k01,1 = 0, 1<i<k-—1,
51,]‘:&51,1, 2<j<k-1, (3.5)
Bx.1

>

3 =0, <ij<k-1.
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Let v;, = 0 for all i(1 <i <k —1). Then taking the change x|, = x; — 2’;_,16" we have:

01
[xll’le] = lxl ﬁklebxl —mek] =016k — 0,16k =0
011 ﬁ 01,1
XLx| = |x1 — ——ep x; 215, e — —— P, iex = 0.
[1 ]] B ! ﬁ k1 B

Thus, we obtain the algebra Lg(f;), with 8, & {0,1}.

Let there exist i(1 <i <k — 1) such that v;; # 0. According to the equalities (3.4) and (3.5)
we have v;x = —f; and 6, = 0, which implies that 6, ; =0 for 2 < j <k — 1. Thus we have
the algebra L;(f;) with 5, & {0,1}.

Considering the case S 1, fi 25 - Prx_1 € {0,1}, similarly to the proof of the Theorem 3.1 we

obtain the algebras Lg(f;), L7(B;) with 5, € {0,1}, Lg(7;), Lo and Lyo(; ). O

Now we give the description of solvable Leibniz algebras from the class R(ax,k — 1) in the
general case. Let there exist iy and j, such that o;; = —1 and o;, = 0. Without loss of generality
we can assume that oy =---=o,_;=—land oy =--- = o4_1 = 0.

Theorem 3.3. Let L be a solvable Leibniz algebra from the class R(a, k — 1) and let oy = --- =
o1 =—1and oy =--- =gy =0. Then L is isomorphic to one of the following algebras:

[ei> xi] = eis 1<i<k-1,
My (B> Bos oo Prer) 1§ leoxi] = Pier, 1<i<k—1,
[xie]=—e, 1<i<t—1,

[ei» xi] = ei, l<i<k-1
e x| = Per,  1<i<k—1,
M, (B1 Bas s Br—1) {x,,ek} =—fie, 1<i<k-1,
[xie] =—e,  1<i<t—1,
[erx:] = e + Beex,
[ei»xi] = e l<i<k-1,
Ms,t(B1 Bos s Bra) = § [enXi] = Biew tsisket
[ex> Xt] = ex,
[xi> &i] = —eis lsisi-1
[e1, x1] = e1 + Brex
[ei> xi] = ei, 2sisk—1,
len, %] = Bk 2<i<k-1,
[ex> x1] = ek,
My, (Bys Bas - Bra) [x1,e1] = —e1 — frex
[xi> ei] = —eis 2sist=1
1] = — Bk 2<i<k-—1,
[xl,ek] = —é,
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e xi] = e 1<i<k-—1,
[ex> X1] = ek

[x,,e] —e, 1<i<t-—1,
[xieil] =vier, 2<i<k-—1,

Ms (725 V35 00 Vko1)

ei» xi] = ej 1<i<k-1,
ek x¢| = ek

Me, (V1,12 V1) 1 X6 = —e, 1 <i<t—1,
[*t, ek] = —ek»

[xi:ek]:Viet) 1§l§k_13

[ei,Xi]:ei, lglgk_1>
My (dij) = § [Xi>ei] = —eis 1<i<t-—1,
[xi,xj] = (S,‘)j@k, 1 S l,] S k — 1.

Proof. The proof is similar to the proof of the Theorem 3.1. O
In the following theorem we give the classification of (2k — 1)-dimensional solvable Leibniz

algebras with k-dimensional abelian nilradical.

Theorem 3.4. Let L be a (2k — 1)-dimensional solvable Leibniz algebra with k-dimensional abelian
nilradical. Then L is isomorphic to one of the following pairwise non-isomorphic algebras:

Ml t(ﬁl’ﬁ2> -~-’ﬂk—1)’ M4 t(l ﬁz’ﬁ3> -~-’ﬂt—1’ﬁt’ ﬁz+1’ ~--’ﬁk—1)a
MZ f(ﬁl"' ﬁtfl’o""’o)’ M4 [(0 1 ﬂ3> ""ﬁtfl’lfl”ﬁhkl’""ﬁk*l)’
M;s,¢(1, Bas s Bi—t B Bests Bz Brer)s - Ma1(0,0,0,..,0,1, By By ),
M;5,4(0,0,...,0,1, Byi1s Brinees Brot)s M, (1 733"'>q/t71’q/t3"'>q/k71)>
M;,4(0,0,...,0,0,1, B 5, Br1)s Ms5,4(0,0,...,0, 1,715 w0 Pk )s
M7,t(5i,j).

where at least one of the parameters J;; is non-zero and this non-zero parameter can be scaled
to 1.

Proof. From Theorem 3.3 we have the list of solvable Leibniz algebras from the class R(ax, k — 1).
It is obvious that the class M; ,(f3;) gives us pairwise non-isomorphic algebras for any parameters
p; € C. Moreover, in the case t=1 we get the algebra L;(f;.)

In the class of algebras M, ,(f5;), at least one of the parameters f3; is non-zero. Otherwise we
obtain the algebra M (0,0, ...,0). Moreover if f; # 0 with j > ¢, then making the change

/ / /
e =6 € =¢e, € =g

1 / ﬁt / ﬁl

Xj, X=X — X, =xi——x, 1<i<k-—1,

t:[?j 'j ﬁ i ﬁ J>

'~

we obtain that

Mo, i (Brs oo Bjp - Br1) 2 My iy (—& 1. —h>
J
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Thus, we have the class M, ¢(f;, ..., f,_1,0,...,0). It is not difficult to check that two algebras
from this class are non-isomorphic.

In the class of algebras M; (f;, 5, .., fx_1) also at least one of the parameters f3; is non-zero.
Moreover, if f; # 0 with 1 <j <t —1, then without lost of generality we may suppose f3; # 0

and making the change e, = f§,ex we may assume f§; = 1. In the case of ;=0 for 1 <j<t—1
and f§; # 0, the parameter f§; can be scaled to 1. If ;=0 for 1 <j <t then without lost of

generality we may assume f5,,; # 0 and making the change ¢, = f§,, ex we obtain f, | = 1.
Thus,

M3>t(1> Bas - ﬁt—l’ﬁpﬁﬂrl’ ﬁt+2"" kal)
M3,t(0> 0,...0,1, ﬁzﬂ) ﬁt+2"" ﬁk—l)
M;4(0,0,...,0,0,1, B, 5., Br_1)-

are non-isomorphic algebras.

Analyzing the class of algebras My ((f, By, ... fi_1) and Ms ¢(1, 7, ..., Yx_1) similarly we obtain
following non-isomorphic algebras

M4,t(1’ ﬁz’ B37 RS} ﬁt—l’ ﬁt’ ﬁt+1’ SR Bk—l)’
M4,t(0’ L ﬁ3> B ﬁtfl’ ﬁp [’)t+1’ s ﬁk—l)’
My(0,0,0,...,0,1, B 15 e Brr)s

In the class of Mg ((v1, Vs, ..., Vk—1) making the change

Ms, (1,35 o Vem15 Vs oo Vo1 s
Ms.1(0,0,...,0, 1,74 15 s V1)

/ / / / /
e, =e, € =e, e =eé, X =X X = X1,

we get that M6,t(l/l’ Vs eees kal) = MS,t+1(V1, V72seus kal)- O
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