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Abstract We consider Potts model, with competing interactions and countable spin
values Φ = {0, 1, . . . } on a Cayley tree of order three. We study periodic ground
states for this model.

Keywords Potts model · Configuration · Ground state · Weakly periodic ground
state · Countable set of spin values

1 Introduction

Each Gibbs measure is associated with a single phase of physical system. As is
known, the phase diagram of Gibbs measures for a Hamiltonian is close to the phase
diagram of isolated (stable) ground states of this Hamiltonian. At low temperatures,
a periodic ground state corresponds to a periodic Gibbs measures, see [1–9]. The
problem naturally aries on description of periodic ground states. In [3, 4] for the
Ising model with competing interactions, periodic and weakly periodic ground states
were studied.

In [1] ground states were described and the Peierls condition for the Potts model
is verified. Using a contour argument authors showed the existence of three different
Gibbs measures associated with translation invariant ground states.

In [5], (1), [8] studying periodic and weakly periodic ground states for the Potts
model with competing interactions on aCayley tree. In the present paper, we consider
Potts model, with competing interactions and a countable set of spin values Φ =
{0, 1, . . . } on a Cayley tree of order three. We study periodic ground states.

In [10] the 3-state Potts model with competing binary interactions (with couplings
J and Jp) on a Bethe lattice of order two is considered. The set of ground states of
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the one-level model is completely described. The critical temperature of a phase
transition is exactly found and the phase diagram is presented.

In [11] an exact phase diagram of the Potts model with next nearest neighbor
interactions on the Cayley tree of order two is found.

The paper is organized as follows. In Sect. 2, we recall the main definitions and
known facts. In Sect. 3, we study periodic ground states.

2 Main Definitions and Known Facts

Cayley tree. The Cayley tree (Bethe lattice) Γ k of order k ≥ 1 is an infinite tree, i.e.,
a graph without cycles, such that exactly k + 1 edges originate from each vertex (see
[12]). Let Γ k = (V, L) where V is the set of vertices and L the set of edges. Two
vertices x and y are called nearest neighbors if there exists an edge l ∈ L connecting
them and we denote l = 〈x, y〉.

On this tree, there is a natural distance to be denoted d(x; y), being the number
of nearest neighbor pairs of the minimal path between the vertices x and y (by path
one means a collection of nearest neighbor pairs, two consecutive pairs sharing at
least a given vertex).

For a fixed x0 ∈ V , the root, let

Wn = {x ∈ V : d(x, x0) = n}, Vn = {x ∈ V : d(x, x0) ≤ n};

be respectively the sphere and the ball of radius n with center at x0.
It is well-known that there exists a one-to-one correspondence between the set V

of vertices of the Cayley tree of order k ≥ 1 and the group Gk of the free products of
k + 1 cyclic groups of second order with generators a1, a2, . . . , ak+1 (see [2, 13]).

3 Configuration Space and the Model

For each x ∈ Gk , let S(x) denote the set of direct successors of x , i.e., if x ∈ Wn then

S(x) = {y ∈ Wn+1 : d(x, y) = 1}.

For each x ∈ Gk , let S1(x) denote the set of all neighbors of x , i.e. S1(x) = {y ∈
Gk : 〈x, y〉 ∈ L}. The set S1(x) \ S(x) is a singleton. Let x↓ denote the (unique)
element of this set.

We consider the models in which the spin takes values in the set Φ = {1, 2, . . . }.
A configuration σ on the set V is defined as a function x ∈ V → σ(x) ∈ Φ; the set
of all configurations coincides with Ω = ΦV .

Let G∗
k be a subgroup of index r ≥ 1. Consider the set of right coset Gk/G∗

k =
{H1, . . . , Hr }, where G∗

k is a subgroup.
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Definition 1 A configuration σ(x) is said to be G∗
k - periodic if σ(x) = σi for all

x ∈ Hi . A Gk-periodic configuration is said to be translation invariant.

The period of a periodic configuration is the index of the corresponding subgroup.

Definition 2 A configuration σ(x) is said to be G∗
k - weakly periodic if σ(x) = σi j

for all x ∈ Hi and x↓ ∈ Hj .

The Hamiltonian of the Potts model with competing interactions has the form

H(σ ) = J1
∑

〈x,y〉:
x,y∈V

δσ(x)σ (y) + J2
∑

x,y∈V :
d(x,y)=2

δσ(x)σ (y), (1)

where J1, J2 ∈ R and

δuv =
{
1, u = v,
0, u 
= v.

4 Ground States

For pair of configurations σ and ϕ coinciding almost everywhere, i.e., everywhere
except at a finite number of points, we consider the relative Hamiltonian H(σ, ϕ) of
the difference between the energies of the configurations σ and ϕ, i.e.,

H(σ, ϕ) = J1
∑

〈x,y〉,
x,y∈V

(δσ(x)σ (y) − δϕ(x)ϕ(y)) + J2
∑

x,y∈V :
d(x,y)=2

(δσ(x)σ (y) − δϕ(x)ϕ(y)), (2)

where J = (J1, J2) ∈ R2 is an arbitrary fixed parameter.
Let M be the set of all unit balls with vertices in V . By the restricted configuration

σb we mean the restriction of a configuration σ to a ball b ∈ M . The energy of a
configuration σb on b is defined by the formula

U (σb) ≡ U (σb, J ) = 1

2
J1

∑

〈x,y〉,
x,y∈b

δσ(x)σ (y) + J2
∑

x,y∈b:
d(x,y)=2

δσ(x)σ (y), (3)

where J = (J1, J2) ∈ R2.
The following assertion is known (see [2–8])

Lemma 1 The relative Hamiltonian (2) has the form

H(σ, ϕ) =
∑

b∈M
(U (σb) −U (ϕb)).

Note that, in [5] in the case k = 2 and Φ = {1, 2, 3} all periodic (in particular
translation-invariant) ground states for the Potts model (1) are given. In [9] the set
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of weakly periodic ground states corresponding to index-two normal divisors of the
group representation of the Cayley tree is given. In [8] the sets of periodic andweakly
periodic ground states corresponding to normal subgroups of the group representation
of the Cayley tree of index 4 are described.

We consider the case k = 3. It is easy to see that U (σb) ∈ {U1,U2, . . . ,U12} for
any σb, where

U1 = 2J1 + 6J6, U2 = 3

2
J1 + 3J2, U3 = J1 + 2J2, U4 = 1

2
J1 + 3J2,

U5 = 6J2, U6 = 1

2
J1, U7 = 3J2, U8 = J2,

U9 = J1 + J2, U10 = 1

2
J1 + J2, U11 = 2J2, U12 = 0.

Definition 3 A configuration ϕ is called a ground state of the relative Hamiltonian
H if U (ϕb) = min{U1,U2, . . . ,U12} for any b ∈ M .

We set Ci = {σb : U (σb) = Ui } and Ui (J ) = U (σb, J ) if σb ∈ Ci , i = 1, 2, . . . ,
12.

If a ground state is a periodic (weakly periodic, translation invariant) configuration
then we call it a periodic (weakly periodic, translation invariant) ground state.

Let
A ⊂ {1, 2, . . . , k + 1}, HA = {x ∈ Gk :

∑

j∈A

w j (x) is even},

G(2)
k = {x ∈ Gk : |x | is even},G(4)

k = HA ∩ G(2)
k ,

where wj (x) is the number of occurrences of a j in x and |x | is the length of x , i.e.
|x | = ∑k+1

j=1 wj (x). Notice that G
(4)
k is a normal subgroup of index 4 of Gk .

Then we have

G(4)
k = {x ∈ Gk : |x | is even,

∑

j∈A

w j (x) is even}.

If A = {1, 2, . . . , k + 1} then the normal subgroup HA coincideswith the groupG
(2)
k .

For any i = 1, 2, . . . , 12 we put

Ai = {J ∈ R2 : Ui = min{U1,U2, . . . ,U12}}. (4)

Quite cumbersome but not difficult calculations show that

A1 = {J ∈ R2 : J1 ≤ 0, J2 ≤ 0} ∪ {J ∈ R2 : J1 ≤ −6J2, J2 ≥ 0},
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A2 = {J ∈ R2 : J1 ≥ 0,−6J2 ≤ J1 ≤ −4J2},

A3 = A4 = A10 = {J ∈ R2 : J1 = 0, J2 = 0},

A5 = {J ∈ R2 : J1 ≥ 0, J2 ≤ 0},

A6 = {J ∈ R2 : J2 ≥ 0,−2J2 ≤ J1 ≤ 0},

A7 = A8 = A11 = {J ∈ R2 : J1 ≥ 0, J2 = 0},

A9 = {J ∈ R2 : J2 ≤ 0,−4J2 ≤ J1 ≤ −2J2},

A12 = {J ∈ R2 : J1 ≤ 0, J2 ≤ 0}, and R2 =
⋃

n

An.

Theorem 1 For any class Ci , i = 1, 2, . . . 12, and any bounded configuration σb ∈
Ci , there exists a periodic configuration ϕ (on the Cayley tree) such that ϕb′ ∈ Ci for
any b′ ∈ M and ϕb = σb.

Proof For an arbitrary class Ci , i = 1, 2, . . . , 12, and σb ∈ Ci , we construct the
configuration ϕ as follows: without loss of generality, we can take the ball centered
at e ∈ G3 (where e is the unit element ofG3) for the ball b, i.e., b = {e, a1, a2, a3, a4}.

We consider several cases.
CaseC1. In this case, we have σ(x) = i , i ∈ Φ, for any x ∈ b. The configurationϕ

hence coincideswith the translation-invariant configuration, i.e.ϕ(i) = {ϕ(i)(x) = i},
where i ∈ Φ.

Case C2. This case is considered in [8]. Let H{i} be normal subgroup of index
two, and Gk/H{i} = {H (2)

0 , H (2)
1 } is quotient group, for any i ∈ {1, 2, 3, 4}. For any

l,m ∈ Φ, l 
= m, considering the following H{i}−periodic configuration:

ϕ
(lm)
2 (x) =

{
l, if x ∈ H (2)

0 ,

m, if x ∈ H (2)
1 .

In [8] it was proved, that (ϕ(lm)
2 )b′ ∈ C2 for any b′ ∈ M .

Case C3. Let H{i, j}, i, j ∈ {1, 2, 3, 4} and i 
= j be a normal subgroup of index
two, and Gk/H{i, j} = {H (3)

0 , H (3)
1 } be the quotient group. For any l,m ∈ Φ, l 
= m,

consider the following H{i, j}− periodic configuration:

ϕ
(lm)
3 (x) =

{
l, if x ∈ H (3)

0 ,

m, if x ∈ H (3)
1 .

So we thus obtain a periodic configuration ϕ
(lm)
3 with period p = 2 (equal to the

index of the subgroup); then by construction (ϕ
(lm)
3 )b = σb. Now we shall prove that

all restrictions (ϕ
(lm)
3 )b′ for any b′ ∈ M of the configuration ϕ

(lm)
3 belong to C3.
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Letq j (x) = |S1(x) ∩ H (3)
j |, j = 0, 1;where S1(x) = {y ∈ Gk : 〈x, y〉}, the set of

all nearest neighbors of x ∈ Gk .Denote Q(x) = (q0(x), q1(x)).Clearly q0(x) (resp.
q1(x)) is the number of points y in S1(x) such that ϕ

(lm)
3 (y) = l (resp. ϕ(lm)

3 (y) = m).
We note (see Chap.1 of [2]) that for every x ∈ Gk there is a permutation πx of the
coordinates of the vector Q(e) (where e as before is the identity of Gk) such that

πx Q(e) = Q(x).

Moreover Q(x) = Q(e) if x ∈ H (3)
0 and Q(x) = (q1(e), q0(e)) if x ∈ H (3)

1 . Thus
for any b′ ∈ M we have (i) if cb′ ∈ H (3)

0 (where cb′ is the center of b′) then (ϕ
(lm)
3 )b′ ∈

C3, (i i) if cb′ ∈ H (3)
1 , then (ϕ

(lm)
3 )b′ ∈ C3.

Case C4. Let H{i, j,r} be a normal subgroup of index two, and Gk/H{i, j,r} =
{H (4)

0 , H (4)
1 } is the quotient group, for any i, j, r ∈ {1, 2, 3, 4} and i 
= j, i 
= r, j 
=

r . For any l,m ∈ Φ, l 
= m, considering the following H{i, j,r}− periodic configura-
tion:

ϕ
(lm)
4 (x) =

{
l, if x ∈ H (4)

0 ,

m, if x ∈ H (4)
1 .

We thus obtain a periodic configuration ϕ
(lm)
4 with period p = 2; it is clear that

(ϕ
(lm)
4 )b′ ∈ C4 for any b′ ∈ M.

Case C5. LetGk/G
(2)
k = {H (5)

0 , H (5)
1 } is quotient group. For any l,m ∈ Φ, l 
= m,

consider the following G(2)
k − periodic configuration:

ϕ
(lm)

5 (x) =
{
l, if x ∈ H (5)

0 ,

m, if x ∈ H (5)
1 .

It is easy to see (see [8]) that for each b′ ∈ M we have (ϕ
(lm)

5 )b′ ∈ C5.
Case C6. Let G

(6)
3 = Hi ∩ Hj ∩ Hr , for any i, j, r ∈ {1, 2, 3, 4}, i 
= j, i 
= r,

j 
= r. We note (see [2]) that G(6)
3 is a normal index-eight subgroup in G3, and

G3/G
(6)
3 = {H (6)

0 , H (6)
1 , . . . , H (6)

7 } is quotient group, where
H (6)

0 = G(6)
3 = {x ∈ G3 : wi (x) is even,wj (x) is even,wr (x) is even},

H (6)
1 = {x ∈ G3 : wi (x) is even,wj (x) is even,wr (x) is odd},

H (6)
2 = {x ∈ G3 : wi (x) is even,wj (x) is odd,wr (x) is even},

H (6)
3 = {x ∈ G3 : wi (x) is even,wj (x) is odd,wr (x) is odd},

H (6)
4 = {x ∈ G3 : wi (x) is odd,wj (x) is even,wr (x) is even},

H (6)
5 = {x ∈ G3 : wi (x) is odd,wj (x) is even,wr (x) is odd},

H (6)
6 = {x ∈ G3 : wi (x) is odd,wj (x) is odd,wr (x) is even},

H (6)
7 = {x ∈ G3 : wi (x) is odd,wj (x) is odd,wr (x) is odd}.
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Fig. 1 Representation of the G(6)
k periodic configuration ϕ

(lmnp)
6 (x) on the Cayley tree of order

k = 3

For given σb, we have

σb(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l, if x ∈ H (6)
0 ∪ H (6)

7 ∩ b,
m, if x ∈ H (6)

1 ∪ H (6)
6 ∩ b,

n, if x ∈ H (6)
2 ∪ H (6)

5 ∩ b,
p, if x ∈ H (6)

3 ∪ H (6)
4 ∩ b.

For any l,m, n, p ∈ Φ, l 
= m, l 
= n, l 
= p,m 
= n,m 
= p, n 
= p, continue the
bounded configuration σb ∈ C6 to the entire lattice Γ 3 (which is denoted by ϕ

(lmnp)
6 ,

(see Fig. 1)) as

ϕ
(lmnp)
6 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l, if x ∈ H (6)
0 ∪ H (6)

7 ,

m, if x ∈ H (6)
1 ∪ H (6)

6 ,

n, if x ∈ H (6)
2 ∪ H (6)

5 ,

p, if x ∈ H (6)
3 ∪ H (6)

4 .
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Case C7. Let Gk/G
(4)
k = {H (7)

0 , H (7)
1 , H (7)

2 , H (7)
3 } be quotient group. In [8] it was

proved that for G(4)
k − periodic configurations

ϕ
(lmn)
7 (x) =

⎧
⎨

⎩

l, if x ∈ H (7)
0 ∩ H (7)

1 ,

m, if x ∈ H (7)
2 ,

n, if x ∈ H (7)
3 ,

and

ψ
(lmn)
7 (x) =

⎧
⎨

⎩

l, if x ∈ H (7)
0 ,

m, if x ∈ H (7)
1 ,

n, if x ∈ H (7)
2 ∩ H (7)

3 ,

one has: (ϕ
(lmn)
7 )b′ ∈ C7, (ψ

(lmn)
7 )b′ ∈ C7 for all l,m, n ∈ Φ, l 
= m, l 
= n,m 
= n

and for any b′ ∈ M .
In [9] it was proved that H{1,2,3}− weakly periodic configurations

ξ
(lmn)
7 (x) =

⎧
⎪⎪⎨

⎪⎪⎩

l, if x↓ ∈ H0, x ∈ H0

m, if x↓ ∈ H0, x ∈ H1

n, if x↓ ∈ H1, x ∈ H0

l, if x↓ ∈ H1, x ∈ H1,

satisfy the following: (ξ
(lmn)
7 )b′ ∈ C7 for all l,m, n ∈ Φ, l 
= m, l 
= n,m 
= n and

for any b′ ∈ M .
Case C8. Let G

(8)
3 = H{i, j} ∩ H{k} ∩ H{r}, i, j, k, r ∈ {1, 2, 3, 4}, i 
= j, i 
= k,

i 
= r, j 
= k, j 
= r, k 
= r. We note (see [2]) that G(8)
3 is a normal index-eight

subgroup in G3, and G3/G
(8)
3 = {H (8)

0 , H (8)
1 , . . . , H (8)

7 } is quotient group, where
H (8)

0 = G(8)
3 = {x ∈ G3 : wi (x) + wj (x) is even,wk(x) is even,wr (x) is even},

H (8)
1 = {x ∈ G3 : wi (x) + wj (x) is even,wk(x) is even,wr (x) is odd},

H (8)
2 = {x ∈ G3 : wi (x) + wj (x) is even,wk(x) is odd,wr (x) is even},

H (8)
3 = {x ∈ G3 : wi (x) + wj (x) is even,wk(x) is odd,wr (x) is odd},

H (8)
4 = {x ∈ G3 : wi (x) + wj (x) is odd,wk(x) is even,wr (x) is even},

H (8)
5 = {x ∈ G3 : wi (x) + wj (x) is odd,wk(x) is even,wr (x) is odd},

H (8)
6 = {x ∈ G3 : wi (x) + wj (x) is odd,wk(x) is odd,wr (x) is even},

H (8)
7 = {x ∈ G3 : wi (x) + wj (x) is odd,wk(x) is odd,wr (x) is odd}.

In this case, for any l,m, n, p ∈ Φ, l 
= m, l 
= n, l 
= p,m 
= n,m 
= p, n 
= p
we define the configuration ϕ

(lmnp)
8 as

ϕ
(lmnp)
8 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l, if x ∈ H (8)
0 ∪ H (8)

7 ,

m, if x ∈ H (8)
1 ∪ H (8)

6 ,

n, if x ∈ H (8)
2 ∪ H (8)

5 ,

p, if x ∈ H (8)
3 ∪ H (8)

4 .
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We thus obtain a periodic configuration ϕ
(lmnp)
8 with the period p = 8 such that

(ϕ
(lmnp)
8 )b = σb, (ϕ

(lmnp)
8 )b′ ∈ C8 for any b′ ∈ M.

Case C9. We consider a normal subgroup H0 ∈ G3 (see [2]) of infinite index
constructed as follows. Let themappingπ0 : {a1, a2, a3, a4} → {e, a1, a2} be defined
by

π0(ai ) =
{
ai , if i = 1, 2
e, if i 
= 1, 2.

Consider

f0(x) = f0(ai1ai2 . . . aim ) = π0(ai1)π0(ai2) . . . π0(aim ).

Then it is easy to see that f0 is a homomorphism and hence H0 = {x ∈ G3 :
f0(x) = e} is a normal subgroup of infinity index.
Now we consider the factor group

G3/H0 = {H0,H0(a1),H0(a2),H0(a1a2),H0(a2a1), ...},

where H0(y) = {x ∈ G3 : f0(x) = y}. We introduce the notations

Hn = H0(a1a2...︸ ︷︷ ︸
n

),H−n = H0(a2a1...︸ ︷︷ ︸
n

).

In this notation, the factor group can be represented as

G3/H0 = {...,H−2,H−2,H0,H1,H2, ...}.

It is known (see [6]), that for x ∈ Hn we have |S1(x) ∩ Hn−1| = 1, |S1(x) ∩
Hn| = k − 1, |S1(x) ∩ Hn+1| = 1.

Consider the following configuration

ϕ
(lm)
9 (x) =

⎧
⎨

⎩

2nl, if x ∈ Hn, n 
= 0,
0, if x ∈ H0,

(2n − 1)m, if x ∈ H−n, n 
= 0,

where l,m ∈ Φ, l 
= m, n = 1, 2, 3 . . .

We thus obtain a periodic configuration ϕ
(lm)
9 with the infinity period, such that

(ϕ
(lm)
9 )b = σb ∈ C9, and (ϕ

(lm)
9 )b′ ∈ C9 for any b′ ∈ M .

CaseC10. Let S3 be the group of third-order permutations.We chooseπ0, π1, π2 ∈
S3 as

π0 =
(
1 2 3
1 2 3

)
, π1 =

(
1 2 3
1 3 2

)
, π2 =

(
1 2 3
3 2 1

)
. (5)

It is easily seen that π0 = π2
1 = π2

2 .
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We consider the map u : {a1, a2, a3, a4} → {π1, π2}

u(ai ) =
{

π1, i = 1, 2;
π2, i = 3, 4

(6)

and assume that the function f : G3 → S3 is defined as

f (x) = f (ai1ai2 . . . ain ) = u(ai1) . . . u(ain ).

Let

π3 =
(
1 2 3
3 1 2

)
, π4 =

(
1 2 3
2 3 1

)
, π5 =

(
1 2 3
2 1 3

)
.

We note (see [14]) that H10 = {x ∈ G3 : f (x) = π0} is a normal index-six sub-
group. Let G3/H10 = {ℵ0, . . . ,ℵ5} be the quotient group, where

ℵi = {x ∈ G3 : f (x) = πi }, i = 0, 5.

In this case, we define the configuration

ϕ
(l,m,n)
10 (x) =

⎧
⎨

⎩

l, x ∈ ℵ0 ∪ ℵ5,

m, x ∈ ℵ1 ∪ ℵ4,

n, x ∈ ℵ2 ∪ ℵ3,

where l,m, n ∈ Φ, l 
= m, l 
= n,m 
= n.

We thus obtain a periodic configuration ϕ
(l,m,n)
10 with the period six, such that

(ϕ
(l,m,n)
10 )b = σb ∈ C10, (ϕ

(l,m,n)
10 )b′ ∈ C10 for any b′ ∈ M.

Case C11. Let S3 be the group of third-order permutations. It is easily seen that
π0 = π2

1 = π2
5 .

We consider the map u : {a1, a2, a3, a4} → {π1, π5}

u(ai ) =
{

π5, i = 1, 2;
π1, i = 3, 4,

(7)

and assume that the function f : G3 → S3 is defined as

f (x) = f (ai1ai2 . . . ain ) = u(ai1) . . . u(ain ).

We note (see [14]) that H11 = {x ∈ G3 : f (x) = π0} is a normal index-six sub-
group. Let G3/H11 = {ℵ0, . . . ,ℵ5} be the quotient group, where

ℵi = {x ∈ G3 : f (x) = πi }, i = 0, 5.

In this case, we define the configuration
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ϕ
(l,m,n)
11 (x) =

⎧
⎨

⎩

l, x ∈ ℵ0 ∪ ℵ2,

m, x ∈ ℵ4 ∪ ℵ5,

n, x ∈ ℵ1 ∪ ℵ3,

where l,m, n ∈ Φ, l 
= m, l 
= n,m 
= n.

We thus obtain a periodic configuration ϕ
(l,m,n)
11 with the period six, such that

(ϕ
(l,m,n)
11 )b = σb ∈ C11, (ϕ

(l,m,n)
11 )b′ ∈ C11 for any b′ ∈ M.

Case C12. LetU = {(a1a2)n ∈ G3 : n ∈ Z}. It is easy to see, thatU is subgroup
of the group G3. Consider the set of right cosets G3/U = {U ,U a1, . . . ,U ak+1,

U a1a2, ...} of U in G3. We introduce the notations

H0 = U , H1 = U a1, ..., Hk+1 = U ak+1, Hk+2 = U a1a2, ....

In this notation, the set of right coset can be represented as

G3/U = {H0, H1, . . . Hk+1, Hk+2, ...}.

Consider the following configuration: ϕl
12(x) = l + i, if x ∈ Hi for all i =

0, 1, 2, ... and for any l ∈ Φ.
Let x ∈ Hn , thenϕl

12(x) = l + n and if Hn = U a j1a j2 ...a jn , then for all y ∈ S1(x)we
have y ∈ U a j1a j2 ...a jn at , t = 1, 2, 3, 4. By construction of configuration we have
ϕl
12(y) 
= ϕl

12(x) and ϕl
12(y1) 
= ϕl

12(y2) for all y, y1, y2 ∈ S1(x), y1 
= y2.
We thus obtain aU −periodic configuration ϕl

12 with the infinity period, such that
(ϕl

12)b′ ∈ C12 for any b′ ∈ M.

We set B = A1 ∩ A2, B0 = A1 ∩ A5, B1 = A2 ∩ A9, B2 = A9 ∩ A6, B3 = A6 ∩
A12, Ã1 = A1 \ (B ∪ B0), Ã2 = A2 \ (B0 ∪ B1), Ã5 = A5 \ (B0 ∪ A7), Ã6 = A6 \
(B2 ∪ B3), Ã9 = A9 \ (B1 ∪ B2) and Ã12 = A12 \ (B3 ∪ A7). Let GS(H) be the set
of all ground states, and let GSp(H) be the set of all periodic ground states.

Remark 1 (1) Note that,
(i) If q ≥ 3 then the ground states σ(x), ϕ(lm)

2 , ϕ
(lm)
3 , ϕ

(lm)
4 , ϕ

(lm)

5 , ϕ
(lmp)
7 , ψ

(lmn)
7 ,

ξ
(lmn)
7 , ϕ

(lmn)
10 , ϕ

(lmn)
11 described in Theorem1 are ground states for the q state Potts

model on the Cayley tree of order three.
(ii) If q ≥ 4 then the ground states ϕ

(lmnp)
6 , ϕ

(lmnp)
8 (described in Theorem1) are

ground states for the q state Potts model on the Cayley tree of order three.
(iii) The ground states ϕ

(lm)
9 , ϕl

12 are ground states only for the Potts model with
countable set of spin values on the Cayley tree of order three.

(2) In this paper we considered the case k = 3. If one considers the case k ≥ 4,
the ground states described in Theorem1 may not be ground state, and this class of
ground states may be extended. Besides the set Ai in (4) will be different.

Theorem 2 A. If J = (0, 0), then GS(H) = Ω.

B. 1. If J ∈ Ã1, then GSp(H) = {ϕ(i) : i ∈ Φ}.
2. If J ∈ Ã2, then GSp(H) = {ϕ(lm)

2 : l,m ∈ Φ, l 
= m}.
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3. If J ∈ Ã5, then GSp(H) = {ϕ(lm)

5 : l,m ∈ Φ, l 
= m}.
4. If J ∈ Ã6, then GSp(H) = {ϕ(lmnp)

6 : l,m, n, p ∈ Φ, l 
= m, l 
= n, l 
= p,m 
=
n,m 
= p, n 
= p}.
5. If J ∈ Ã9, then GSp(H) = {ϕ(lm)

9 : l,m ∈ Φ, l 
= m}.
6. If J ∈˜A12, then GSp(H) = {ϕl

12 : l ∈ Φ}.
C. 1. If J ∈ B \ {(0, 0)}, then GSp(H) = {ϕ(i), ϕ

(lm)
2 : i, l,m ∈ Φ, l 
= m}.

2. If J ∈ B0 \ {(0, 0)}, then GSp(H) = {ϕ(i), ϕ
(lm)

5 : i, l,m ∈ Φ, l 
= m}.
3. If J ∈ B1 \ {(0, 0)}, then GSp(H) = {ϕ(lm)

2 , ϕ
(lm)
9 : i, l,m ∈ Φ, l 
= m}.

4. If J ∈ B2 \ {(0, 0)} then GSp(H) = {ϕ(lmnp)
6 , ϕ

(lm)
9 : l,m, n, p ∈ Φ, l 
= m, l 
=

n, l 
= p,m 
= n,m 
= p, n 
= p}.
5. If J ∈ B3 \ {(0, 0)} then GSp(H) = {ϕ(lmnp)

6 , ϕl
12 : l,m, n, p ∈ Φ, l 
= m, l 
= n,

l 
= p,m 
= n,m 
= p, n 
= p}.
6. If J ∈ A8, then periodic configuration ϕ

(lm)

5 , ξ
(lmn)
7 (x), ψ(lmn)

7 (x), ϕ(lmnp)
8 (x), ϕl

12

are periodic ground states, and weakly periodic configuration ξ
(lmn)
7 (x) is weakly

periodic ground state, where l,m, n, p ∈ Φ, l 
= m, l 
= n, l 
= p,m 
= n,m 
= p,
n 
= p.

Proof Case A is trivial. In cases B and C, for a given configuration σb for which the
energy U (σb) is minimal, we can use Theorem1 to construct the periodic configu-
rations.

Remark 2 Since the set Φ is countable, it follows that the periodic and weakly
periodic ground states described in Theorem2 are countable.
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