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We consider models with nearest-neighbour interactions and with the set [0, 1] of spin
values, on a Cayley tree of order k ≥ 1. It is known that the “splitting Gibbs measures” of the
model can be described by solutions of a nonlinear integral equation. Recently, by solving this
integral equation some periodic (in particular translation invariant) splitting Gibbs measures were
found. In this paper we give three constructions of new sets of nontranslation invariant splitting
Gibbs measures. Our constructions are based on known solutions of the integral equation (1.5).
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1. Introduction
Let us first give necessary definitions, then explain what is the main problem;

secondly we give the history of its solutions and then formulate the part of the
problem which we want to solve in this paper.

A Cayley tree 0k of order k ≥ 1 is an infinite tree, i.e. a graph without cycles,
such that exactly k + 1 edges originate from each vertex. Let 0k = (V , L) where
V is the set of vertices and L the set of edges.

Two vertices x and y are called nearest neighbours if there exists an edge l ∈ L
connecting them. We will use the notation l = 〈x, y〉.

A collection of nearest neighbour pairs 〈x, x1〉, 〈x1, x2〉, ..., 〈xd−1, y〉 is called
a path from x to y. The distance d(x, y) on the Cayley tree is the number of
edges of the shortest path from x to y.

For a fixed x0
∈ V , called the root, we set

Wn = {x ∈ V | d(x, x
0) = n}, Vn =

n⋃
m=0

Wm, Ln = {〈x, y〉 ∈ L : x, y ∈ Vn}

and denote
Sk(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x on the Cayley tree of order k.

[105]
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We consider models where the spin takes values in the set [0, 1], and spins
are assigned to the vertices of the tree. For A ⊂ V , a configuration σA on A
is an arbitrary function σA : A → [0, 1]. Denote by �A = [0, 1]A the set of all
configurations on A. We denote � = [0, 1]V .

The Hamiltonian of the model is

H(σ) = −J
∑
〈x,y〉∈L

ξσ(x)σ (y), (1.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0, 1]2 → ξuv ∈ R is a given bounded, measurable
function.

Let λ be the Lebesgue measure on [0, 1]. On the set of all configurations on
A the a priori measure λA is introduced as the |A|-fold product of the measure λ,
where |A| denotes the cardinality of A.

We consider a standard sigma-algebra B of subsets of � = [0, 1]V generated by
the measurable cylinder subsets.

A probability measure µ on (�,B) is called a Gibbs measure (corresponding to
the Hamiltonian H ) if it satisfies the DLR equation, namely for any n = 1, 2, . . .
and σn ∈ �Vn ,

µ
({
σ ∈ � : σ

∣∣
Vn
= σn

})
=

∫
�

µ(dω)νVnω|Wn+1
(σn),

where
ν
Vn
ω|Wn+1

(σn) =
1

Zn

(
ω
∣∣
Wn+1

) exp
(
−βH

(
σn ||ω

∣∣
Wn+1

))
,

and β = 1
T

, T > 0 is temperature. Furthermore, σ
∣∣
Vn

and ω
∣∣
Wn+1

denote the
restrictions of configurations σ, ω ∈ � to Vn and Wn+1, respectively. Next, σn : x ∈
Vn 7→ σn(x) is a configuration in Vn and

H
(
σn ||ω

∣∣
Wn+1

)
= −J

∑
〈x,y〉∈Ln

ξσn(x)σn(y) − J
∑

〈x,y〉: x∈Vn,y∈Wn+1

ξσn(x)ω(y).

Finally,

Zn

(
ω
∣∣
Wn+1

)
=

∫
�Vn

exp
(
−βH

(
σ̃n ||ω

∣∣
Wn+1

))
λVn(dσ̃n).

The main problem for a given Hamiltonian is to describe all its Gibbs measures.
See [8] for a general definition of Gibbs measure, motivations why these measures
are important and the theory of such measures.

This main problem is not completely solved even for simple Ising or Potts
models on a Cayley tree with a finite set of spin values. Mainly this problem is
solved for the class of splitting Gibbs measures (SGMs) [11] (Markov chains [8]),
which are limiting Gibbs measures constructed by Kolmogorov’s extension theorem
of the following finite-dimensional distributions: given n = 1, 2, . . . , consider the
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probability distribution µn on �Vn defined by

µn(σn) = Z
−1
n exp

(
−βH(σn)+

∑
x∈Wn

hσ(x),x

)
, (1.2)

where h : x ∈ V 7→ hx = (ht,x, t ∈ [0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0
}.

Here Zn is the corresponding partition function. The probability distributions µn are
compatible if for any n ≥ 1 and σn−1 ∈ �Vn−1 ,∫

�Wn

µn(σn−1 ∨ ωn)λWn(d(ωn)) = µn−1(σn−1). (1.3)

Here σn−1 ∨ ωn ∈ �Vn is the concatenation of σn−1 and ωn.
To see that a SGM satisfies the DLR equation, we consider any finite volume

D and note that for any finite n which is sufficiently large we have

µn
({
ω ∈ � : ω

∣∣
D
= σD

})
=

∫
�

µn(dϕ)ν
D
ϕ (σD), (1.4)

which follows from the compatibility property of the finite-volume Gibbs measures.
For the model (1.1) on the Cayley tree, in [10], the problem of describing the

SGMs was reduced to the description of the solutions of the following integral
equation

f (t, x) =
∏

y∈Sk(x)

∫ 1
0 K(t, u)f (u, y)du∫ 1
0 K(0, u)f (u, y)du

. (1.5)

Here, K(t, u) = exp(Jβξtu) and the unknown function is f (t, x) > 0, x ∈ V ,
t ∈ [0, 1] and du = λ(du) is the Lebesgue measure.

If a solution f (t, x) is given then the corresponding SGM µ on � is such that,
for any n and σn ∈ �Vn ,

µ
({
σ

∣∣∣
Vn

= σn

})
= Z−1

n exp
(
−βH(σn)+

∑
x∈Wn

ln f (σ(x), x)
)
.

A splitting Gibbs measure is called translation invariant measure if it corresponds
to a solution f (t, x) which does not depend on x ∈ V , i.e. f (t, x) = f (t) for any
x ∈ V .

In this paper we only deal with splitting Gibbs measures, therefore we omit the
word “splitting” in the following text.

Note that the analysis of solutions to (1.5) is not easy. This difficulty depends
on the given function ξ (i.e. on K(t, u) > 0).

Let us list known results about solutions of (1.5) and the Gibbs measures
corresponding to them:

In [10] for k = 1 it was shown that the integral equation has a unique solution.
In the case k ≥ 2 some models (with the set [0, 1] of spin values) which have
a unique Gibbs measure are constructed.
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In [3] several models with nearest-neighbour interactions and with the set [0, 1]
of spin values, on a Cayley tree of order k ≥ 2 are constructed. It is proved that each
of the constructed models has at least two translational invariant Gibbs measures,
i.e. the equation (1.5) has at least two solutions f (t, x) which are independent of
the vertices x of the tree.

In [4] a condition on K(t, u) is found under which the corresponding integral
equation (1.5) has a unique solution independent of x (i.e. uniqueness of the
translation invariant Gibbs measure).

In [5] for a specifically chosen K(t, u) it is shown that under certain conditions
on the parameters of the model there are at least two translation invariant Gibbs
measures (i.e. there are phase transitions).

In [9] the authors considered a model on a Cayley tree of order k ≥ 2, where
the function ξ depends on a parameter θ ∈ [0, 1). It is show that for θ ∈ [0, 5

3k ]

the model has a unique translation invariant Gibbs measure. If θ ∈ ( 5
3k , 1) there is

a phase transition, in particular there are three translation invariant Gibbs measures.
Paper [12] deals with a class of Gibbs measures which are periodic and also

a Markov chain. It is shown that the period must be either 1 or 2. If k = 1 or
the interaction is weak enough, the period is 1, i.e. every such Gibbs measure is
translation invariant. For k = 2, a class of interactions is constructed admitting at
least two Gibbs measures with period 2. For k sufficiently large, an interaction is
given admitting at least four Gibbs measures with period two.

In [6] the translation invariant Gibbs measures for a function K(t, u) are
investigated by properties of positive fixed points of quadratic operators. Under
some conditions it is shown that there are two and three positive fixed points.

We note that in the mentioned above papers the existence of a Gibbs measure
is proved by directly solving Eq. (1.5) for concrete by chosen K(t, u).

In this paper our aim is slightly different: we mainly will construct new solutions
of (1.5) by means of its known solutions. To do this we will adapt to our models
the construction methods which were used for models with a finite set of spin
values (see [1, 2, 8, 11]).

2. Nontranslation invariant Gibbs measures
2.1. ART construction

In [1] for the Ising model (with the set {−1, 1} of spin values) the authors
constructed a class of new Gibbs measures by extending the known Gibbs measures
defined on a Cayley tree of order k0 to a Cayley tree of higher order k > k0. Their
construction is called the ART-construction [7].

In this subsection we adapt the ART-construction to models with an uncountable
set of spin values.

For a given H(σ) of the model (1.1), denote by Gk(H) the set of all splitting
Gibbs measures on the Cayley tree of order k ≥ 2. By |M| we denote the number
of elements of a set M .



NONTRANSLATION INVARIANT GIBBS MEASURE 109

The main result of this subsection is the following theorem.

THEOREM 1. Take k0, k ∈ {2, 3, . . . }, such that k > k0. If |Gk0(H)| ≥ 2 and
K(t, u) is such that∫ 1

0
(K(t, u)−K(0, u))du = 0, ∀t ∈ [0, 1], (2.1)

then for each µ ∈ Gk0(H) there is a ν = ν(µ) ∈ Gk(H).
Proof : By our assumptions we have that Gk0(H) contains at least two elements.

Condition (2.1) guarantees that f (t, x) ≡ 1 is a solution of Eq. (1.5) for any k ≥ 2.
Denote by µ1 the Gibbs measure which corresponds to this solution.

Now, for any µ ∈ Gk0(H) \ {µ1}, we shall construct a Gibbs measure ν = ν(µ)
which is a measure on the Cayley tree of order k > k0. As mentioned in the previous
section, to each measure µ ∈ Gk0(H) corresponds a unique function f (t, x) = fµ(t, x)
which satisfies (1.5) on 0k0 . Construct a function g(t, x) ≡ gµ(t, x) on 0k as follows.
Let V k be the set of all vertices of the Cayley tree 0k. Since k0 < k one can
consider V k0 as a subset of V k. Define the following function,

g(t, x) =

fµ(t, x), if x ∈ V k0,

1, if x ∈ V k \ V k0 .
(2.2)

Now we shall check that (2.2) satisfies (1.5) on 0k. Let x ∈ V k0 ⊂ V k. We have

g(t, x) =
∏

y∈Sk(x)

∫ 1
0 K(t, u)g(u, y)du∫ 1
0 K(0, u)g(u, y)du

=

∏
y∈Sk(x)∩V

k0

∫ 1
0 K(t, u)fµ(u, y)du∫ 1
0 K(0, u)fµ(u, y)du

∏
y∈Sk(x)∩(V

k\V k0 )

∫ 1
0 K(t, u)du∫ 1
0 K(0, u)du

For the first product we use Sk(x) ∩ V
k0 = Sk0(x) and for the second product we

use the condition (2.1), then we get

g(t, x) =
∏

y∈Sk0 (x)

∫ 1
0 K(t, u)fµ(u, y)du∫ 1
0 K(0, u)fµ(u, y)du

= fµ(t, x).

If x ∈ V k \V k0 then Sk(x) ⊂ V
k
\V k0 . Therefore g(u, y) = 1, for any y ∈ Sk(x)

and we have

g(t, x) =
∏

y∈Sk(x)

∫ 1
0 K(t, u)du∫ 1
0 K(0, u)du

= 1.

Thus g(t, x), x ∈ V k, satisfies the integral equation (1.5) and we denote by ν = ν(µ)
the Gibbs measure which corresponds to g(t, u). By the construction one can see
that ν(µ1) 6= ν(µ2) if µ1 6= µ2 and the measure ν is not translation invariant. �
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Now let us give some examples where the conditions of Theorem 1 are satisfied.

EXAMPLE 1. Let k = 2. In the model (1.1) take

ξtu =
1
βJ

ln

(
1+

14
15
·

5

√
4
(
t −

1
2

)(
u−

1
2

))
, t, u ∈ [0, 1].

Then, for the kernel K(t, u) of (1.5) we have

K(t, u) = 1+
14
15
·

5

√
4
(
t −

1
2

)(
u−

1
2

)
.

In [3] it was shown that this model has at least two Gibbs measures and the
condition (2.1) is satisfied, i.e. f (t, x) ≡ 1 is a solution to (1.5).

EXAMPLE 2. Consider the case k = 3 and

K(t, u) = 1+
1
2

7

√
4
(
t −

1
2

)(
u−

1
2

)
.

This model also satisfies the conditions of Theorem 1 and has at least two Gibbs
measures (see [3]).

For other examples satisfying conditions of Theorem 1 see [3], [5], [12].

2.2. The Bleher–Ganikhodjaev construction

Here we will adapt the Bleher–Ganikhodjaev construction of [2] for the model
(1.1).

If an arbitrary edge 〈x0, x1
〉 = l ∈ L is deleted from the Cayley tree 0k, it splits

into two components – two semi-infinite (half) trees 0k0 and 0k1 . Consider the half
tree 0k0 , and denote by V 0 the set of its vertices. Namely the root x0 has k nearest
neighbours.

Denoting h(t, x) = ln f (t, x) we write Eq. (1.5) as

h(t, x) =
∑

y∈Sk(x)

ln

∫ 1
0 K(t, u)e

h(u,y)du∫ 1
0 K(0, u)e

h(u,y)du
. (2.3)

On the set C[0, 1] of continuous functions define the following nonlinear operator

Af (t) = ln

∫ 1
0 K(t, u)e

f (u)du∫ 1
0 K(0, u)e

f (u)du
, (2.4)

where K(t, u) > 0.

CONDITION 1. Assume that K(t, u) > 0 is continuous on [0, 1]2, i.e. K(·, ·) ∈
C+[0, 1]2, and there is α ≡ αK ∈ [0, 1) such that

|Af (t)− Ag(t)| ≤ α|f (t)− g(t)|, ∀f, g ∈ C[0, 1],∀t ∈ [0, 1].
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CONDITION 2. Assume that there are at least two translation invariant solutions,
say h(t, x) ≡ h(t) ∈ C[0, 1] and h(t, x) ≡ η(t) ∈ C[0, 1], to Eq. (2.3), i.e. they are
fixed points for the operator kA,

h(t) = kAh(t) = k ln

∫ 1
0 K(t, u)e

h(u)du∫ 1
0 K(0, u)e

h(u)du
, η(t) = kAη(t). (2.5)

REMARK 1. If Condition 1 is satisfied then to satisfy Condition 2 it is necessary
that 1

k
≤ α < 1.

We use h(t) and η(t) to construct an uncountable set of new solutions to (2.3).
Consider an infinite path π = {x0

= x0 < x1 < . . . } (the notation x < y meaning
that paths from the root to y go through x). Associate to this path a collection
hπ = {hπt,x : x ∈ V

0, t ∈ [0, 1]} given by

hπt,x =


h(t), if x ≺ xn, x ∈ Wn,

η(t), if xn ≺ x, x ∈ Wn,

ht,xn, if x = xn,
(2.6)

n = 1, 2, . . . where x ≺ xn (resp. xn ≺ x) means that x is on the left (resp. right)
from the path π and ht,xn are specific numbers, some conditions on these numbers
will be given below.

THEOREM 2. If Conditions 1 and 2 are satisfied, then for any infinite path π
there exists a unique set of numbers hπ = {hπt,x} satisfying equations (2.3) and (2.6).

Proof : On Wn, we define the set

h
(n)
t,x =


h(t), if x ≺ xn, x ∈ Wn,

η(t), if xn ≺ x, x ∈ Wn,

h
(n)
t,x , if x = xn,

(2.7)

where h
(n)
t,xn ∈ (h

min(t), hmax(t)), ∀t ∈ [0, 1], is an arbitrary number and hmin(t),
hmax(t) are translation invariant solutions of (2.3), i.e.

hε(t) = kAhε(t), ε = min,max . (2.8)

We extend the definition of h(n)t,x for all x ∈ Vn = ∪nm=0Wm using recursion Eqs.
(2.3) and prove that the limit

ht,x = lim
n→∞

h
(n)
t,x (2.9)

exists for every fixed x ∈ V 0 and is independent of the choice of h(n)t,x for x = xn.
If x ∈ Wn−1 and x ≺ xn−1, then for any y ∈ Sk(x) we have y ≺ xn, therefore

h
(n)
t,x =

∑
y∈Sk(x)

ln

∫ 1
0 K(t, u)e

h
(n)
u,ydu∫ 1

0 K(0, u)e
h
(n)
u,ydu

= kAh(t) = h(t).
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Similarly, for x ∈ Wn−1 and xn−1 ≺ x, we get h(n)t,x = η(t). Consequently, for any
x ∈ Wm, m ≤ n we have

h
(n)
t,x =

{
h(t), if x ≺ xm, x ∈ Wm,

η(t), if xm ≺ x, x ∈ Wm.
(2.10)

This implies that the limit (2.9) exists for x ∈ Wm, x 6= xm and

ht,x =

{
h(t), if x ≺ xm, x ∈ Wm,

η(t), if xm ≺ x, x ∈ Wm.

Therefore, we only need to establish that the limit (2.9) exists for x = xm. For
1 ≤ l ≤ n we have

h
(n)
t,xl−1 =

∑
y∈Sk(xl−1)

ln

∫ 1
0 K(t, u)e

h
(n)
u,ydu∫ 1

0 K(0, u)e
h
(n)
u,ydu

=

∑
y∈Sk(xl−1)

Ah
(n)
t,y . (2.11)

Consider two sets {h̄(n)t,x , x ∈ Vn} and {h̃(n)t,x , x ∈ Vn} which correspond to two values
h̄
(n)
t,x and h̃

(n)
t,x for x = xn, in (2.7), then since h̃

(n)
t,y = h̄

(n)
t,y , ∀t ∈ [0, 1] and for any

y 6= xl , y ∈ Wl , from (2.11) we get

h̃
(n)
t,xl−1 − h̄

(n)
t,xl−1 = Ah̃

(n)
t,xl
− Ah̄

(n)
t,xl
. (2.12)

Consequently, by Condition 1 we get∣∣∣h̃(n)t,xl−1 − h̄
(n)
t,xl−1

∣∣∣ ≤ α ∣∣∣h̃(n)t,xl − h̄(n)t,xl ∣∣∣ . (2.13)

Iterating this inequality we obtain∣∣∣h̃(n)t,xm − h̄(n)t,xm∣∣∣ ≤ αn−m ∣∣∣h̃(n)t,xn − h̄(n)t,xn∣∣∣ . (2.14)

For arbitrary N,M > n, we now consider the sets {h(N)t,x , x ∈ VN } and {h(M)t,x , x ∈
VM}, t ∈ [0, 1], determined by initial conditions of the form (2.7) for x ∈ WN

and x ∈ WM , respectively, and by recursion equations (2.3). We set h̄(n)t,xn = h
(N)
t,xn ,

h̃
(n)
t,xn = h

(M)
t,xn . Then inequalities (2.14) imply∣∣∣h(N)t,xm − h

(M)
t,xm

∣∣∣ ≤ αn−m ∣∣∣h(N)t,xn − h
(M)
t,xn

∣∣∣ ≤ 2hmax
0 αn−m.

This estimate implies that the sequence h
(n)
t,xm satisfies the Cauchy criterion as

n→∞ for a fixed m and a fixed t ∈ [0, 1]; therefore, the limit (2.9) exists and
is independent of the choice of h(n)t,xn in (2.7). Because, by construction, the sets
{h
(n)
t,x } satisfy equation (2.3) before taking the limit, so does {ht,x}. The uniqueness

of {ht,x} obviously follows from the estimate (2.14). �

A real number r = r(π), 0 ≤ r ≤ 1, can be assigned to the infinite path π
(see [2]) and by Theorem 2 the set hπ(r) (where π(r) is the path corresponding to
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the number r ∈ [0, 1]) satisfying (2.3) is uniquely defined. By the construction of
hπ(r) it is obvious that they are distinct for different r ∈ [0, 1]. We denote by νr
the Gibbs measure corresponding to hπ(r), r ∈ [0, 1]. One thus obtains uncountably
many Gibbs measures, i.e. we proved the following result.

THEOREM 3. If Conditions 1 and 2 are satisfied then for any r ∈ [0, 1] there
exists a nontranslation invariant Gibbs measure νr and νr 6= νl if r 6= l.

2.3. The Zachary construction

In this subsection we adopt Zachary’s construction ([14], [8, p.251]), which was
done for the Ising model, for our model (1.1) on the Cayley tree.

CONDITION 3. Assume K(t, u) > 0 such that the operator A, (2.4), is invertible.

From (2.3) we get that

hmin(t) ≤ h(t, x) ≤ hmax(t), ∀x ∈ V, (2.15)

where

hmin(t) = k ln
minu∈[0,1]K(t, u)
maxu∈[0,1]K(0, u)

, hmax(t) = k ln
maxu∈[0,1]K(t, u)
minu∈[0,1]K(0, u)

.

Under Conditions 2 and 3 we shall construct a continuum of distinct functions
h
ζ
t,x , which satisfy the functional equation (2.3), where ζ(t) is such that

hmin(t) < ζ(t) < hmax(t), ∀t ∈ [0, 1]. (2.16)

Take any ζ(t) with condition (2.16). Define the sequence ζn(t), n ≥ 0 recursively
by ζ0(t) = ζ(t),

ζn(t) = kAζn+1(t), n ≥ 0. (2.17)

Since the operator A is invertible the definition of ζn(t) given by (2.17) is
unambiguous.

Define the function h
ζ
t,x by h

ζ
t,x = ζn(t) for all x ∈ Wn. Now we check that

this function satisfies Eq. (2.3): for any x ∈ V there is n ≥ 0 such that x ∈ Wn,
consequently, Sk(x) ⊂ Wn+1 and we have

h
ζ
t,x =

∑
y∈Sk(x)

Ah
ζ
t,y =

∑
y∈Sk(x)

Aζn+1(t) = kAζn+1(t) = ζn(t),

i.e. the function h
ζ
t,x satisfies (2.3) for any t and ζ .

By the construction, distinct functions ζ define distinct functions hζ = {h
ζ
t,x ,

x ∈ V , t ∈ [0, 1]}. Denote by µζ the Gibbs measure which corresponds to the
function hζ .

Thus we have proved the following

THEOREM 4. If Conditions 2 and 3 are satisfied, then for any ζ satisfying (2.16)
there exists a Gibbs measure µζ such that µζ 6= µη if ζ 6= η.
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2.4. Discussions

The first our construction (Theorem 1) is an adaptation of the ART-construction.
In particular, it follows from Theorem 1 that if for the model (1.1) (satisfying the
conditions of Theorem 1) there is more than one Gibbs measure on a Cayley tree
of order k0 then it has more than one Gibbs measure for any k ≥ k0.

Theorem 3 gives uncountable set of Gibbs measures. Taking any two of these
measures (i.e. corresponding to two values of t ∈ [0, 1]) one can use the argument
of Subsection 2.2. to extend the set of Gibbs measures. Zachary’s construction is
also a way to give an uncountable set of Gibbs measures.

It is known that the set of all Gibbs measures of the model (1.1) is a nonempty,
convex and compact subset in the set of all probability measures on (�,B) (see
[8, Chapter 7]). Therefore it is interesting to know the extreme elements (Gibbs
measures) of the set of all Gibbs measures. Checking extremality of a given Gibbs
measure is a difficult problem. Our constructions of measures in Theorems 1–4
are based on known Gibbs measures. If the known measures are extreme then the
measures mentioned in Theorems 1–4 also are extreme. In general, the problem
of extremality of measures (mentioned in Theorems 1-4) remains open. Since our
analysis is related to nonlinear integral equations, it seems difficult to give examples
satisfying Conditions 1–3.
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