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0. Introduction

The algebraic classification (up to isomorphism) of algebras of dimension n from a certain variety defined by a certain
family of polynomial identities is a classic problem in the theory of non-associative algebras. There are many results related
to the algebraic classification of small-dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and many other
algebras [1,9,11,14–17,25,26,31,34,41,42]. Another interesting direction in the classification of algebras is the geometric
classification. There are many results related to the geometric classification of Jordan, Lie, Leibniz, Zinbiel and many other
algebras [3,6,8,11,13,26–29,35,36,39–41,44]. In the present paper, we give the algebraic and geometric classification of
4-dimensional nilpotent Novikov algebras introduced by Novikov and Balinsky in [5].

The variety of Novikov algebras is defined by the following identities:

(xy)z = (xz)y,
(xy)z − x(yz) = (yx)z − y(xz).
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It contains commutative associative algebras as a subvariety. On the other hand, the variety of Novikov algebras is the
intersection of the variety of right commutative algebras (defined by the first Novikov identity) and the variety of left
symmetric (Pre-Lie) algebras (defined by the second Novikov identity). Also, a Novikov algebra with the commutator
multiplication gives a Lie algebra, and Novikov algebras are related to Tortken and Novikov–Poisson algebras [19,47]. The
systematic study of Novikov algebras started after the paper of Zelmanov where all finite-dimensional simple Novikov
algebras over the complex field were classified [49]. The first nontrivial examples of infinite-dimensional simple Novikov
algebras were constructed in [24]. Also, simple Novikov algebras were described in infinite-dimensional case and over
fields of positive characteristic [43,46,48]. The algebraic classification of 3-dimensional Novikov algebras was given in [4],
and for some classes of 4-dimensional algebras, it was given in [7]; the geometric classification of 3-dimensional Novikov
algebras was given in [6]. Many other purely algebraic properties of Novikov algebras were studied in a series by papers
of Dzhumadildaev [20–23].

Our method for classifying nilpotent Novikov algebras is based on the calculation of central extensions of nilpotent
algebras of smaller dimensions from the same variety. Central extensions play an important role in quantum mechanics:
one of the earlier encounters is through Wigner´s theorem, which states that a symmetry of a quantum mechanical system
determines an (anti-)unitary transformation of a Hilbert space. Another area of physics where one encounters central
extensions is the quantum theory of conserved currents of a Lagrangian. These currents span an algebra which is closely
related to the so-called affine Kac–Moody algebras, the universal central extensions of loop algebras. Central extensions
are useful in physics because the symmetry group of a quantized system is usually a central extension of the classical
symmetry group, and in the same way the corresponding symmetry Lie algebra of the quantum system is, in general,
a central extension of the classical symmetry algebra. Kac–Moody algebras have been conjectured to be the symmetry
groups of a unified superstring theory. The centrally extended Lie algebras play a dominant role in quantum field theory,
particularly in conformal field theory, string theory and in M-theory. In the theory of Lie groups, Lie algebras and their
representations, a Lie algebra extension is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions
arise in several ways. For example, the trivial extension is obtained as a direct sum of two Lie algebras. Other types are
split and central extensions. Extensions arise naturally, for instance, when one constructs a Lie algebra from projective
group representations. The algebraic study of central extensions of Lie and non-Lie algebras has been an important topic
for years [2,32,33,37,45,50]. First, Skjelbred and Sund used central extensions of Lie algebras to obtain a classification of
nilpotent Lie algebras [45]. After that, using the method described by Skjelbred and Sund, all non-Lie central extensions of
all 4-dimensional Malcev algebras were described [33], and also all non-associative central extensions of 3-dimensional
Jordan algebras [32], all anticommutative central extensions of the 3-dimensional anticommutative algebras [12], and
all central extensions of the 2-dimensional algebras [10]. Note that the Skjelbred–Sund method of central extensions
is an important tool in the classification of nilpotent algebras (see, for example, [30]), which was used to describe
all 4-dimensional nilpotent associative algebras [17], all 4-dimensional nilpotent bicommutative algebras [38], all 5-
dimensional nilpotent Jordan algebras [31], all 5-dimensional nilpotent restricted Lie algebras [15], all 6-dimensional
nilpotent Lie algebras [14,16], all 6-dimensional nilpotent Malcev algebras [34] and some others.

Remark. Note that, the algebraic classification of all 4-dimension nilpotent Novikov algebras can be obtained as a
corollary from [7], but in our opinion the method used in this paper is not clear to understand and many calculations
were omitted. Our algebraic classification is obtained by another method and it confirms the result from [7].

1. The algebraic classification of nilpotent Novikov algebras

1.1. Method of classification of nilpotent algebras

Throughout this paper, we use the notations and methods well written in [10,32,33], which we have adapted for the
Novikov case with some modifications. Further in this section we give some important definitions.

Let (A, ·) be a Novikov algebra over C and V a vector space over C. The C-linear space Z2 (A,V) is defined as the set
of all bilinear maps θ :A × A −→ V such that

θ (xy, z) = θ (xz, y),
θ (xy, z) − θ (x, yz) = θ (yx, z) − θ (y, xz).

These elements will be called cocycles. For a linear map f from A to V, if we define δf :A × A −→ V by δf (x, y) = f (xy),
then δf ∈ Z2 (A,V). We define B2 (A,V) = {θ = δf : f ∈ Hom (A,V)}. We define the second cohomology space H2 (A,V)

as the quotient space Z2 (A,V)
/
B2 (A,V).

Let Aut(A) be the automorphism group of A and let φ ∈ Aut(A). For θ ∈ Z2 (A,V) define the action of the group Aut(A)
on H2 (A,V) by φθ (x, y) = θ (φ (x) , φ (y)). It is easy to verify that B2 (A,V) is invariant under the action of Aut(A). So, we
have an induced action of Aut(A) on H2 (A,V).

Let A be a Novikov algebra of dimension m over C and V be a C-vector space of dimension k. For θ ∈ Z2 (A,V), define
on the linear space Aθ = A⊕V the bilinear product ‘‘ [−, −]Aθ

’’ by
[
x + x′, y + y′

]
Aθ

= xy+θ (x, y) for all x, y ∈ A, x′, y′
∈ V.

The algebra Aθ is called a k-dimensional central extension of A by V. One can easily check that Aθ is a Novikov algebra if
and only if θ ∈ Z2(A,V).
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Call the set Ann(θ ) = {x ∈ A : θ (x,A) + θ (A, x) = 0} the annihilator of θ . We recall that the annihilator of an algebra
A is defined as the ideal Ann(A) = {x ∈ A : xA + Ax = 0}. Observe that Ann (Aθ ) = (Ann(θ ) ∩ Ann(A)) ⊕ V.

The following result shows that every algebra with a non-zero annihilator is a central extension of a smaller-
dimensional algebra.

Lemma 1. Let A be an n-dimensional Novikov algebra such that dim(Ann(A)) = m ̸= 0. Then there exists, up to isomorphism,
a unique (n − m)-dimensional Novikov algebra A′ and a bilinear map θ ∈ Z2(A,V) with Ann(A) ∩ Ann(θ ) = 0, where V is a
vector space of dimension m, such that A ∼= A′

θ and A/Ann(A) ∼= A′.

Proof. Let A′ be a linear complement of Ann(A) in A. Define a linear map P:A −→ A′ by P(x + v) = x for x ∈ A′ and
v ∈ Ann(A), and define a multiplication on A′ by [x, y]A′ = P(xy) for x, y ∈ A′. For x, y ∈ A, we have

P(xy) = P((x − P(x) + P(x))(y − P(y) + P(y))) = P(P(x)P(y)) = [P(x), P(y)]A′ .

Since P is a homomorphism P(A) = A′ is a Novikov algebra and A/Ann(A) ∼= A′, which gives us the uniqueness.
Now, define the map θ :A′

× A′
−→ Ann(A) by θ (x, y) = xy − [x, y]A′ . Thus, A′

θ is A and therefore θ ∈ Z2(A,V) and
Ann(A) ∩ Ann(θ ) = 0. □

Definition 2. Let A be an algebra and I be a subspace of Ann(A). If A = A0 ⊕ I then I is called an annihilator component
of A.

Definition 3. A central extension of an algebra A without annihilator component is called a non-split central extension.

Our task is to find all central extensions of an algebra A by a space V. In order to solve the isomorphism problem we
need to study the action of Aut(A) on H2 (A,V). To do that, let us fix a basis e1, . . . , es of V, and θ ∈ Z2 (A,V). Then θ can

be uniquely written as θ (x, y) =

s∑
i=1

θi (x, y) ei, where θi ∈ Z2 (A,C). Moreover, Ann(θ ) = Ann(θ1)∩Ann(θ2)∩· · ·∩Ann(θs).

Furthermore, θ ∈ B2 (A,V) if and only if all θi ∈ B2 (A,C). It is not difficult to prove (see [33, Lemma 13]) that given a

Novikov algebra Aθ , if we write as above θ (x, y) =

s∑
i=1

θi (x, y) ei ∈ Z2 (A,V) and Ann(θ ) ∩ Ann (A) = 0, then Aθ has an

annihilator component if and only if [θ1] , [θ2] , . . . , [θs] are linearly dependent in H2 (A,C).
Let V be a finite-dimensional vector space over C. The Grassmannian Gk (V) is the set of all k-dimensional linear

subspaces of V. Let Gs
(
H2 (A,C)

)
be the Grassmannian of subspaces of dimension s in H2 (A,C). There is a natural

action of Aut(A) on Gs
(
H2 (A,C)

)
. Let φ ∈ Aut(A). For W = ⟨[θ1] , [θ2] , . . . , [θs]⟩ ∈ Gs

(
H2 (A,C)

)
define φW =

⟨[φθ1] , [φθ2] , . . . , [φθs]⟩. We denote the orbit of W ∈ Gs
(
H2 (A,C)

)
under the action of Aut(A) by Orb(W ). Given

W1 = ⟨[θ1] , [θ2] , . . . , [θs]⟩ ,W2 = ⟨[ϑ1] , [ϑ2] , . . . , [ϑs]⟩ ∈ Gs
(
H2 (A,C)

)
,

we easily have that if W1 = W2, then
⋂s

i=1 Ann(θi) ∩ Ann (A) =
⋂s

i=1 Ann(ϑi) ∩ Ann(A), and therefore we can introduce
the set

Ts(A) =

{
W = ⟨[θ1] , [θ2] , . . . , [θs]⟩ ∈ Gs

(
H2 (A,C)

)
:

s⋂
i=1

Ann(θi) ∩ Ann(A) = 0

}
,

which is stable under the action of Aut(A).
Now, let V be an s-dimensional linear space and let us denote by E (A,V) the set of all non-split s-dimensional central

extensions of A by V. By above, we can write

E (A,V) =

{
Aθ : θ (x, y) =

s∑
i=1

θi (x, y) ei and ⟨[θ1] , [θ2] , . . . , [θs]⟩ ∈ Ts(A)

}
.

We also have the following result, which can be proved as in [33, Lemma 17].

Lemma 4. Let Aθ ,Aϑ ∈ E (A,V). Suppose that θ (x, y) =

s∑
i=1

θi (x, y) ei and ϑ (x, y) =

s∑
i=1

ϑi (x, y) ei. Then the Novikov

algebras Aθ and Aϑ are isomorphic if and only if

Orb ⟨[θ1] , [θ2] , . . . , [θs]⟩ = Orb ⟨[ϑ1] , [ϑ2] , . . . , [ϑs]⟩ .

This shows that there exists a one-to-one correspondence between the set of Aut(A)-orbits on Ts (A) and the set of
isomorphism classes of E (A,V). Consequently we have a procedure that allows us, given a Novikov algebra A′ of dimension
n − s, to construct all non-split central extensions of A′. This procedure is:
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Procedure

(1) For a given Novikov algebra A′ of dimension n − s, determine H2(A′,C), Ann(A′) and Aut(A′).
(2) Determine the set of Aut(A′)-orbits on Ts(A′).
(3) For each orbit, construct the Novikov algebra associated with a representative of it.

1.2. Notations

Let A be a Novikov algebra with a basis e1, e2, . . . , en. Then by ∆ij we denote the bilinear form ∆ij:A × A −→ C
with ∆ij (el, em) = δilδjm. Then the set

{
∆ij : 1 ≤ i, j ≤ n

}
is a basis for the space of the bilinear forms on A. Then every

θ ∈ Z2 (A,C) can be uniquely written as θ =

∑
1≤i,j≤n

cij∆ij, where cij ∈ C. Let us fix the following notations:

N i∗
j — jth i-dimensional nilpotent Novikov algebra with identity xyz = 0

N i
j — jth i-dimensional nilpotent "pure" Novikov algebra (without identity xyz = 0)

Ni — i-dimensional algebra with zero product
(A)i,j — jth i-dimensional central extension of A.

1.3. The algebraic classification of 3-dimensional nilpotent Novikov algebras

There are no nontrivial 1-dimensional nilpotent Novikov algebras. There is only one nontrivial 2-dimensional nilpotent
Novikov algebra (it is the non-split central extension of 1-dimensional algebra with zero product):

N 2∗
01 : (N1)2,1 : e1e1 = e2.

Thanks to [10] we have the description of all central extensions of N 2∗
01 and N2. Choosing the Novikov algebras from the

central extensions of these algebras, we have the classification of all non-split 3-dimensional nilpotent Novikov algebras:

N 3∗
02 : (N2)3,1 : e1e1 = e3, e2e2 = e3;

N 3∗
03 : (N2)3,2 : e1e2 = e3, e2e1 = −e3;

N 3∗
04 (λ) : (N2)3,3 : e1e1 = λe3, e2e1 = e3, e2e2 = e3, λ ̸= 0;

N 3∗
04 (0) : (N2)3,3 : e1e2 = e3,

N 3
01 : (N 2∗

01 )3,1 : e1e1 = e2, e2e1 = e3;
N 3

02(λ) : (N 2∗
01 )3,2 : e1e1 = e2, e1e2 = e3, e2e1 = λe3, λ ∈ C.

1.4. The algebraic classification of 4-dimensional nilpotent Novikov algebras

Recall that the class defined by the identities (xy)z = 0 and x(yz) = 0 lies in the intersection of the varieties of
algebras defined by polynomial identities of degree 3, such as Leibniz algebras, Zinbiel algebras or associative algebras.
On the other side, every algebra defined by the identities (xy)z = 0 and x(yz) = 0 is a central extension of some suitable
algebra with zero product. The list of all non-anticommutative 4-dimensional algebras defined by the identities (xy)z = 0
and x(yz) = 0 can be found in [18]. Note that there is only one 4-dimensional nilpotent anticommutative algebra with
identity (xy)z = 0. Obviously every algebra from this list is a 4-dimensional nilpotent ‘‘non-pure’’ Novikov algebra. The
aim of the present part of the work is to find all 4-dimensional nilpotent ‘‘pure’’ Novikov algebras which do not belong
to the class of algebras defined by the identities (xy)z = 0 and x(yz) = 0.

Now we are ready to state the main result of this part of the paper. The proof of the present theorem is based on the
classification of 3-dimensional nilpotent Novikov algebras and the results of Section 1.5.

Theorem 5. Let N be a nonzero 4-dimensional nilpotent ‘‘pure’’ Novikov algebra over C. Then, N is isomorphic to one of the
algebras listed in Table A (see Appendix).

1.5. 1-Dimensional central extensions of 3-dimensional nilpotent Novikov algebras

1.5.1. The description of second cohomology spaces of 3-dimensional nilpotent Novikov algebras
In the following table we give the description of the second cohomology space of 3-dimensional nilpotent Novikov

algebras
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A Z2 (A) B2(A) H2(A)

N 3∗
01 ⟨∆11, ∆12, ∆13, ∆21, ∆31, ∆33⟩ ⟨∆11⟩ ⟨[∆12], [∆13], [∆21], [∆31], [∆33]⟩

N 3∗
02 ⟨∆11, ∆12, ∆21, ∆22⟩ ⟨∆11 + ∆22⟩ ⟨[∆12], [∆21], [∆22]⟩

N 3∗
03 ⟨∆11, ∆12, ∆21, ∆22⟩ ⟨∆12 − ∆21⟩ ⟨[∆11], [∆21], [∆22]⟩

N 3∗
04 (λ)λ̸=0 ⟨∆11, ∆12, ∆21, ∆22⟩ ⟨λ∆11 + ∆21 + ∆22⟩ ⟨[∆12], [∆21], [∆22]⟩

N 3∗
04 (0)

⟨
∆11, ∆12, ∆13,

∆21, ∆22, ∆23 − ∆32

⟩
⟨∆12⟩

⟨
[∆11], [∆13], [∆21],

[∆22], [∆23] − [∆32]

⟩
N 3

01 ⟨∆11, ∆12, ∆21, ∆13 − ∆31⟩ ⟨∆11, ∆21⟩ ⟨[∆12], [∆13] − [∆31]⟩

N 3
02(λ)

⟨
∆11, ∆12, ∆21,

(2 − λ)∆13 + λ(∆22 + ∆31)

⟩ ⟨
∆11,

∆12 + λ∆21

⟩ ⟨
[∆21],

(2 − λ)[∆13] + λ([∆22] + [∆31])

⟩
where N 3∗

01 = N 2∗
01 ⊕ Ce3.

Remark 6. Since Z2
= ⟨∆11, ∆12, ∆21, ∆22⟩ of the algebras N 3∗

02 ,N 3∗
03 ,N 3∗

04 (λ)λ̸=0 and center of these algebras is
{e3}, then 1-dimensional central extensions of these algebras give us four dimensional algebras with two dimensional
center. Note that four dimensional algebras with two dimensional center are isomorphic to the algebras 2-dimensional
central extensions of 2-dimensional nilpotent Novikov algebras. Thanks to [10] we have the description of all non-split
2-dimensional central extensions of 2-dimensional nilpotent Novikov algebras:

N 4
03 : (N 2∗

01 )4,1 : e1e1 = e2, e1e2 = e4, e2e1 = e3.

1.5.2. Central extensions of N 3∗
01

Let us use the following notations:

∇1 = [∆12], ∇2 = [∆13], ∇3 = [∆21], ∇4 = [∆31], ∇5 = [∆33].

The automorphism group of N 3∗
01 consists of invertible matrices of the form

φ =

⎛⎝x 0 0
u x2 w

z 0 y

⎞⎠ .

Since

φT

( 0 α1 α2
α3 0 0
α4 0 α5

)
φ =

⎛⎝ α∗ x3α1 wxα1 + y(xα2 + zα5)
x3α3 0 0

x(wα3 + yα4) + yzα5 0 y2α5

⎞⎠ ,

the action of Aut(N 3∗
01 ) on subspace

⟨∑5
i=1 αi∇i

⟩
is given by

⟨∑5
i=1 α∗

i ∇i

⟩
, where

α∗

1 = x3α1;

α∗

2 = wxα1 + yxα2 + yzα5;

α∗

3 = x3α3;

α∗

4 = wxα3 + yxα4 + yzα5;

α∗

5 = y2α5.

It is easy to see that the elements α1∇1 +α3∇3 and α2∇2 +α4∇4 +α5∇5 give algebras with 2-dimensional annihilator,
which were described before. Since we are interested only in new algebras, we have the following cases:

(1) α1 ̸= 0, α3 ̸= 0, α5 ̸= 0, then:

(a) if α1 ̸= α3, then choosing x =
1

3√α1
, y =

1
√

α5
, w =

y(α2−α4)
α3−α1

, z =
x(α1α4−α2α3)

α5(α3−α1)
, we have the representative

⟨∇1 + α∇3 + ∇5⟩α ̸=0;1.
(b) if α1 = α3, α2 ̸= α4, then choosing x =

(α2−α4)2

α1α5
, y =

(α2−α4)3

α1α2
5

, w = −
yxα4+yzα5

xα1
, we have the representative

⟨∇1 + ∇2 + ∇3 + ∇5⟩.
(c) if α1 = α3, α2 = α4, then choosing x =

1
3√α1

, y =
1

√
α5

, w = −
yxα4+yzα5

xα1
, we have the representative

⟨∇1 + ∇3 + ∇5⟩.

(2) α1 ̸= 0, α3 ̸= 0, α5 = 0, then:

(a) if α1α4 ̸= α2α3, then choosing x =
1

3√α1
, w = −

yα4
α3

, y =
x2α1

α2α3−α1α4
, we have the representative

⟨∇1 + ∇2 + α∇3⟩α ̸=0.
(b) if α1α4 = α2α3, then choosing x =

1
3√α1

, w = −
yα4
α3

, we have the representative ⟨∇1 + α∇3⟩α ̸=0.
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(3) α1 ̸= 0, α3 = 0, α5 ̸= 0, then choosing x =
1

3√α1
, w = −

yxα2+yzα5
xα1

, z = −
xα4
α5

, y =
1

√
α5

, we have the representative
⟨∇1 + ∇5⟩.

(4) α1 = 0, α3 ̸= 0, α5 ̸= 0, then choosing x =
1

3√α3
, z = −

xα2
α5

, w = −
yxα4+yzα5

xα3
, y =

1
√

α5
, we have the representative

⟨∇3 + ∇5⟩.
(5) α1 = 0, α3 ̸= 0, α5 = 0, then:

(a) if α2 ̸= 0, then choosing y =
x2α3
α2

, x =
1

3√α3
, w = −

yα4
α3

, we have the representative ⟨∇2 + ∇3⟩.

(b) if α2 = 0, then choosing x =
1

3√α3
, w = −

yα4
α3

, we have the representative ⟨∇3⟩.

(6) α1 ̸= 0, α3 = 0, α5 = 0, then:

(a) if α4 ̸= 0, then choosing x =
1

3√α1
, w = −

yα2
α1

, y =
x2α1
α4

, we have the representative ⟨∇1 + ∇4⟩.

(b) if α4 = 0, then choosing x =
1

3√α1
, w = −

yα2
α1

, we have the representative ⟨∇1⟩.

Now we have all new 4-dimensional nilpotent Novikov algebras constructed from N 3∗
01 :

N 4
04(α), N 4

05, N 4
06(α)α ̸=0, N 4

07, N 4
08, N 4

09.

The multiplication tables of these algebras can be found in Appendix.

1.5.3. Central extensions of N 3∗
04 (0)

Let us use the following notations:

∇1 = [∆11], ∇2 = [∆13], ∇3 = [∆21], ∇4 = [∆22], ∇5 = [∆23] − [∆32].

The automorphism group of N 3∗
04 (0) consists of invertible matrices of the form

φ =

( x 0 0
0 y 0
z t xy

)
.

Since

φT

(
α1 0 α2
α3 α4 α5
0 −α5 0

)
φ =

⎛⎝ x(xα1 + zα2) α∗ x2yα2
y(xα3 + zα5) y2α4 xy2α5

0 −xy2α5 0

⎞⎠ ,

the action of Aut(N 3∗
04 (0)) on the subspace ⟨

∑5
i=1 αi∇i⟩ is given by ⟨

∑5
i=1 α∗

i ∇i⟩, where

α∗

1 = x(xα1 + zα2);
α∗

2 = x2yα2;

α∗

3 = y(xα3 + zα5);
α∗

4 = y2α4;

α∗

5 = xy2α5.

It is easy to see that the elements α1∇1 + α3∇3 + α4∇4 give algebras which are central extensions of 2-dimensional
algebras. We have the following new cases:

(1) α4 = α5 = 0, α2 ̸= 0, then:

(a) if α3 = 0, then choosing z = −
xα1
α2

, we have the representative ⟨∇2⟩.
(b) if α3 ̸= 0, then choosing z = −

xα1
α2

and x =
α3
α2

, we have the representative ⟨∇2 + ∇3⟩.

(2) α4 = α2 = 0, α5 ̸= 0, then:

(a) if α1 = 0, then choosing z = −
xα3
α5

, we have the representative ⟨∇5⟩.

(b) if α1 ̸= 0, then choosing z = −
xα3
α5

and x =
y2α5
α1

, we have the representative ⟨∇1 + ∇5⟩.

(3) α4 = 0, α5 ̸= 0, α2 ̸= 0, then:

(a) if α1α5 − α2α3 = 0, then choosing z = −
xα3
α5

and x =
yα5
α2

, we have the representative ⟨∇2 + ∇5⟩.
(b) if α1α5 − α2α3 ̸= 0, then choosing z = −

xα3
α5

, y =
α1α5−α2α3

α2α5
and x =

α1α5−α2α3
α2
2

, we have the representative
⟨∇1 + ∇2 + ∇5⟩.
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(4) α4 ̸= 0, α5 = 0, α2 ̸= 0, then:

(a) if α3 = 0, then choosing z = −
xα1
α2

and y =
x2α2
α4

, we have the representative ⟨∇2 + ∇4⟩.

(b) if α3 ̸= 0, then choosing z = −
xα1
α2

, y =
α2
3

α2α4
and x =

α3
α2

, we have the representative ⟨∇2 + ∇3 + ∇4⟩.

(5) α4 ̸= 0, α5 ̸= 0, α2 = 0, then:

(a) if α1 = 0, then choosing z = −
xα3
α5

and x =
α4
α5

, we have the representative ⟨∇4 + ∇5⟩.
(b) if α1 ̸= 0, then choosing z = −

xα3
α5

, y =

√
α4α1
α2
5

and x =
α4
α5

, we have the representative ⟨∇1 + ∇4 + ∇5⟩.

(6) α4 ̸= 0, α5 ̸= 0, α2 ̸= 0, then choosing z = −
xα3
α5

, y =
α2α4
α2
5
, x =

α4
α5

and α =
α5(α1α5−α2α3)

α2
2α4

, we have the
representative ⟨α∇1 + ∇2 + ∇4 + ∇5⟩.

Now we have all new 4-dimensional nilpotent Novikov algebras constructed from N 3∗
04 :

N 4
10, . . . ,N 4

20(α).

The multiplication tables of these algebras can be found in Appendix.

1.5.4. Central extensions of N 3
01

Let us use the following notations:

∇1 = [∆12], ∇2 = [∆13] − [∆31].

The automorphism group of N 3
01 consists of invertible matrices of the form

φ =

⎛⎝ x 0 0
y x2 0
z xy x3

⎞⎠ .

Since

φT

( 0 α1 α2
0 0 0

−α2 0 0

)
φ =

⎛⎝ α∗ x3α1 + x2yα2 x4α2
α∗∗ 0 0

−x4α2 0 0

⎞⎠ ,

the action of Aut(N 3
01) on the subspace

⟨∑2
i=1 αi∇i

⟩
is given by

⟨∑2
i=1 α∗

i ∇i

⟩
, where

α∗

1 = x3α1 + x2yα2
α∗

2 = x4α2.

Since 2-dimensional central extensions of two dimensional algebras were already considered, we have α2 ̸= 0.
Choosing y = −

α1y
α2

, x =
1

4√α2
, we have the representative ⟨∇2⟩.

Now we have only one new 4-dimensional nilpotent Novikov algebra constructed from N 3
01 :

N 4
21.

The multiplication table of this algebra can be found in Appendix.

1.5.5. Central extensions of N 3
02(λ)

Let us use the following notations:

∇1 = [∆21], ∇2 = (2 − λ)[∆13] + λ([∆22] + [∆31]).

The automorphism group of N 3
02(λ) consists of invertible matrices of the form

φ =

⎛⎝ x 0 0
y x2 0
z xy(1 + λ) x3

⎞⎠ .

Since

φT

( 0 0 (2 − λ)α2
α1 λα2 0
λα2 0 0

)
φ =

⎛⎝ α∗ (2 + 2λ − λ2)x2yα2 (2 − λ)x4α2
x3α1 + λ(2 + λ)x2yα2 λx4α2 0

λx4α2 0 0

⎞⎠ ,
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the action of Aut(N 3
02(λ)) on the subspace ⟨

∑2
i=1 αi∇i⟩ is given by ⟨

∑2
i=1 α∗

i ∇i⟩, where

α∗

1 = x3α1 + λ2(λ − 1)x2yα2,

α∗

2 = x4α2.

Since 2-dimensional central extensions of two dimensional algebras were already considered, we have α2 ̸= 0. We
have the following cases:

(1) if λ ̸= 0, 1, then choosing x =
1

4√α2
, y = −

xα1
λ2(λ−1)α2

, we have the representative ⟨∇2⟩.

(2) if λ = 0 or λ = 1, and α1 = 0, then choosing x =
1

4√α2
, we have the representative ⟨∇2⟩.

(3) if λ = 0 or λ = 1, and α1 ̸= 0, then choosing x =
α1
α2

, we have the representative ⟨∇1 + ∇2⟩.

Now we have all new 4-dimensional algebras constructed from N 3
02(λ) :

N 4
22(λ), N 4

23, N 4
24.

The multiplication tables of these algebras can be found in Appendix.

2. The geometric classification of nilpotent Novikov algebras

2.1. Definitions and notation

Given an n-dimensional vector space V, the set Hom(V⊗V,V) ∼= V∗
⊗V∗

⊗V is a vector space of dimension n3. This
space has the structure of the affine variety Cn3 . Indeed, let us fix a basis e1, . . . , en of V. Then any µ ∈ Hom(V⊗V,V) is
determined by n3 structure constants ckij ∈ C such that µ(ei ⊗ ej) =

∑n
k=1 c

k
ijek. A subset of Hom(V⊗V,V) is Zariski-closed

if it can be defined by a set of polynomial equations in the variables ckij (1 ≤ i, j, k ≤ n).
Let T be a set of polynomial identities. The set of algebra structures on V satisfying polynomial identities from T forms

a Zariski-closed subset of the variety Hom(V⊗V,V). We denote this subset by L(T ). The general linear group GL(V) acts
on L(T ) by conjugations:

(g ∗ µ)(x ⊗ y) = gµ(g−1x ⊗ g−1y)

for x, y ∈ V, µ ∈ L(T ) ⊂ Hom(V ⊗ V,V) and g ∈ GL(V). Thus, L(T ) is decomposed into GL(V)-orbits that correspond to
the isomorphism classes of algebras. Let O(µ) denote the orbit of µ ∈ L(T ) under the action of GL(V) and O(µ) denote
the Zariski closure of O(µ).

Let A and B be two n-dimensional algebras satisfying the identities from T , and let µ, λ ∈ L(T ) represent A and B,
respectively. We say that A degenerates to B and write A → B if λ ∈ O(µ). Note that in this case we have O(λ) ⊂ O(µ).
Hence, the definition of a degeneration does not depend on the choice of µ and λ. If A ̸∼= B, then the assertion A → B
is called a proper degeneration. We write A ̸→ B if λ ̸∈ O(µ).

Let A be represented by µ ∈ L(T ). Then A is rigid in L(T ) if O(µ) is an open subset of L(T ). Recall that a subset of a
variety is called irreducible if it cannot be represented as a union of two non-trivial closed subsets. A maximal irreducible
closed subset of a variety is called an irreducible component. It is well known that any affine variety can be represented
as a finite union of its irreducible components in a unique way. The algebra A is rigid in L(T ) if and only if O(µ) is an
irreducible component of L(T ).

Given the spaces U and W , we write simply U > W instead of dim U > dim W .

2.2. Method of the description of degenerations of algebras

In the present work we use the methods applied to Lie algebras in [8,28,29,44]. First of all, if A → B and A ̸∼= B,
then Der(A) < Der(B), where Der(A) is the Lie algebra of derivations of A. We compute the dimensions of algebras of
derivations and check the assertion A → B only for such A and B that Der(A) < Der(B).

To prove degenerations, we construct families of matrices parametrized by t . Namely, let A and B be two algebras
represented by the structures µ and λ from L(T ) respectively. Let e1, . . . , en be a basis of V and ckij (1 ≤ i, j, k ≤ n) be the
structure constants of λ in this basis. If there exist aji(t) ∈ C (1 ≤ i, j ≤ n, t ∈ C∗) such that Et

i =
∑n

j=1 a
j
i(t)ej (1 ≤ i ≤ n)

form a basis of V for any t ∈ C∗, and the structure constants of µ in the basis Et
1, . . . , E

t
n are such rational functions

ckij(t) ∈ C[t] that ckij(0) = ckij , then A → B. In this case Et
1, . . . , E

t
n is called a parametrized basis for A → B.

Since the variety of 4-dimensional nilpotent Novikov algebras contains infinitely many non-isomorphic algebras, we
have to do some additional work. Let A(∗) := {A(α)}α∈I be a series of algebras, and let B be another algebra. Suppose
that for α ∈ I , A(α) is represented by the structure µ(α) ∈ L(T ) and B ∈ L(T ) is represented by the structure λ. Then we
say that A(∗) → B if λ ∈ {O(µ(α))}α∈I , and A(∗) ̸→ B if λ ̸∈ {O(µ(α))}α∈I .

Let A(∗), B, µ(α) (α ∈ I) and λ be as above. To prove A(∗) → B it is enough to construct a family of pairs (f (t), g(t))
parametrized by t ∈ C∗, where f (t) ∈ I and g(t) ∈ GL(V). Namely, let e1, . . . , en be a basis of V and ckij (1 ≤ i, j, k ≤ n)
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be the structure constants of λ in this basis. If we construct aji : C∗
→ C (1 ≤ i, j ≤ n) and f : C∗

→ I such that
Et
i =

∑n
j=1 a

j
i(t)ej (1 ≤ i ≤ n) form a basis of V for any t ∈ C∗, and the structure constants of µf (t) in the basis Et

1, . . . , E
t
n

are such rational functions ckij(t) ∈ C[t] that ckij(0) = ckij , then A(∗) → B. In this case Et
1, . . . , E

t
n and f (t) are called a

parametrized basis and a parametrized index for A(∗) → B, respectively.
We now explain how to prove A(∗) ̸→ B. Note that if Der A(α) > Der B for all α ∈ I then A(∗) ̸→ B. One can use

also the following generalization of Lemma from [29], whose proof is the same as the proof of Lemma.

Lemma 7. Let B be a Borel subgroup of GL(V) and R ⊂ L(T ) be a B-stable closed subset. If A(∗) → B and for any α ∈ I
the algebra A(α) can be represented by a structure µ(α) ∈ R, then there is λ ∈ R representing B.

2.3. The geometric classification of 4-dimensional nilpotent Novikov algebras

The main result of the present section is the following theorem.

Theorem 8. The variety of 4-dimensional nilpotent Novikov algebras has two irreducible components defined by infinite
families of algebras N 4

20(α) and N 4
22(λ).

Proof. Recall that the full description of the degeneration system of 4-dimensional non-pure Novikov algebras was given
in [39]. Using the cited result, we can see that the variety of 4-dimensional non-pure Novikov algebras has two irreducible
components given by the following families of algebras:

N2(α) e1e1 = e3, e1e2 = e4, e2e1 = −αe3, e2e2 = −e4
N3(α) e1e1 = e4, e1e2 = αe4, e2e1 = −αe4, e2e2 = e4, e3e3 = e4.

Now we can prove that the variety of 4-dimensional nilpotent Novikov algebras has two irreducible components. One
can easily compute that

Der N 4
20(α) = 3, Der N 4

22(λ)λ̸=0,1 = 3.

Since the dimensions of derivations of these algebras are the smallest possible in this variety, the families of algebras
N 4

20(α) and N 4
22(λ) give two irreducible components. The list of all necessary degenerations is given in Table B (see

Appendix). □

Table A
The list of 4-dimensional nilpotent ‘‘pure’’ Novikov algebras.

N 4
01 : e1e1 = e2 e2e1 = e3

N 4
02(λ) : e1e1 = e2 e1e2 = e3 e2e1 = λe3

N 4
03 : e1e1 = e2 e1e2 = e4 e2e1 = e3

N 4
04(α) : e1e1 = e2, e1e2 = e4, e2e1 = αe4, e3e3 = e4,

N 4
05 : e1e1 = e2, e1e2 = e4, e1e3 = e4, e2e1 = e4, e3e3 = e4

N 4
06(α)α ̸=0 : e1e1 = e2, e1e2 = e4, e1e3 = e4, e2e1 = αe4

N 4
07 : e1e1 = e2, e2e1 = e4, e3e3 = e4

N 4
08 : e1e1 = e2, e1e3 = e4, e2e1 = e4

N 4
09 : e1e1 = e2, e1e2 = e4, e3e1 = e4

N 4
10 : e1e2 = e3 e1e3 = e4

N 4
11 : e1e2 = e3 e1e3 = e4 e2e1 = e4,

N 4
12 : e1e2 = e3 e2e3 = e4 e3e2 = −e4,

N 4
13 : e1e2 = e3 e1e1 = e4 e2e3 = e4 e3e2 = −e4,

N 4
14 : e1e2 = e3 e1e3 = e4 e2e3 = e4 e3e2 = −e4,

N 4
15 : e1e2 = e3 e1e1 = e4 e1e3 = e4 e2e3 = e4 e3e2 = −e4,

N 4
16 : e1e2 = e3 e1e3 = e4 e2e2 = e4,

N 4
17 : e1e2 = e3 e1e3 = e4 e2e1 = e4 e2e2 = e4,

N 4
18 : e1e2 = e3 e2e2 = e4 e2e3 = e4 e3e2 = −e4,

N 4
19 : e1e2 = e3 e1e1 = e4 e2e2 = e4 e2e3 = e4 e3e2 = −e4,

N 4
20(α) : e1e2 = e3 e1e1 = αe4 e1e3 = e4 e2e2 = e4 e2e3 = e4 e3e2 = −e4,

N 4
21 : e1e1 = e2, e2e1 = e3, e1e3 = e4, e3e1 = −e4

N 4
22(λ) : e1e1 = e2 e1e2 = e3 e1e3 = (2 − λ)e4 e2e1 = λe3 e2e2 = λe4 e3e1 = λe4

N 4
23 : e1e1 = e2 e1e2 = e3 e1e3 = 2e4 e2e1 = e4

N 4
24 : e1e1 = e2 e1e2 = e3 e1e3 = e4 e2e1 = e3 + e4 e2e2 = e4 e3e1 = e4,
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Table B
Degenerations of 4-dimensional nilpotent Novikov algebras.
N 4

14 → N 4
01 Et

1 = t−1(e1 − e2), Et
2 = −t−2e3, Et

3 = −t−3e4, Et
4 = −e2

N 4
22(λ) → N 4

02(λ) Et
1 = e1, Et

2 = e2, Et
3 = e3, Et

4 = t−1e4

N 4
23 → N 4

03 Et
1 = te1, Et

2 = t2e2, Et
3 = t3e4, Et

4 = t3e3

N 4
20(−

β

(β+1)2
) → N 4

04(β) Et
1 = t2(−βe1 +

β2

β+1 e2 −
β2

β+1 e3 +
β3

β+1 e4)

Et
2 = t4(− β3

β+1 e3 +
2β4

(β+1)2
e4), Et

3 = t3 β2

β+1 e2, E
t
4 = t6 β4

(β+1)2
e4

N 4
20(−

1
4 −

1
2

3
√

t
4 ) → N 4

05 Et
1 = −

3√4t2e1 +
3
√

t2
2 e2 −

3
√

t2
2 e3, Et

2 = −
3√2t4e3 + ( 3√2t4 −

3
√

t5
2 )e4, Et

3 = te2, Et
4 = t2e4

N 4
04(α ̸= 1) → N 4

06(α) Et
1 = t(e1 −

α

(α−1)2
e2 +

α
α−1 e3 +

α2

(α−1)4
e4),

Et
2 = t2(e2 −

α

(α−1)2
e4), Et

3 = t2(e3 −
1

α−1 e2 +
α

(α−1)3
e4), Et

4 = t3e4

N 4
20(0) → N 4

07 Et
1 = t2(−e1 + e2 − e3 + e4), Et

2 = t4(−e3 + 2e4), Et
3 = −t3e2, Et

4 = t6e4

N 4
23 → N 4

08 Et
1 = te1, Et

2 = t2e2, Et
3 =

1
2 t

2e3, Et
4 = t3e4

N 4
22(2) → N 4

09 Et
1 = t(e1 − e2), Et

2 = t2(e2 − 3e3 + 2e4), Et
3 = t2(e3 − 4e4), Et

4 = 2t3e4

N 4
11 → N 4

10 Et
1 = t−1e1, Et

2 = t−2e2, Et
3 = t−3e3, Et

4 = t−4e4

N 4
20(t − 1) → N 4

11 Et
1 = t(e1 + e3 − e4), Et

2 = te2, Et
3 = t(e3 − e4), Et

4 = te4

N 4
13 → N 4

12 Et
1 = te1, Et

2 = e2, Et
3 = te3, Et

4 = te4

N 4
15 → N 4

13 Et
1 = t2e1, Et

2 = te2, Et
3 = t3e3, Et

4 = t4e4

N 4
15 → N 4

14 Et
1 = t−1e1, Et

2 = t−1e2, Et
3 = t−2e3, Et

4 = t−3e4

N 4
20(

1
t ) → N 4

15 Et
1 = t−1e1, Et

2 = t−1e2, Et
3 = t−2e3, Et

4 = t−3e4

N 4
17 → N 4

16 Et
1 = t−1e1, Et

2 = t−2e2, Et
3 = t−3e3, Et

4 = t−4e4

N 4
20(t

3
− t) → N 4

17 Et
1 = te1 + t2e3 − t3e4, Et

2 = t2e2, Et
3 = t3e3 − t4e4, Et

4 = t4e4

N 4
19 → N 4

18 Et
1 = e1, Et

2 = t−1e2, Et
3 = t−1e3, Et

4 = t−2e4

N 4
20(

1
t2
) → N 4

19 Et
1 = e1, Et

2 = t−1e2, Et
3 = t−1e3, Et

4 = t−2e4

N 4
22(

1
t ) → N 4

21 Et
1 = e1, Et

2 = e2, Et
3 =

1
t e3, E

t
4 = −

1
t2
e4

N 4
22(t) → N 4

23 Et
1 = e1 +

1
t2(t−1)

e2, Et
2 = e2 +

t+1
t2(t−1)

e3 +
1

t3(t−1)2
e4, Et

3 = e3 +
2+2t−t2

t2(t−1)
e4, Et

4 = e4

N 4
22(t + 1) → N 4

24 Et
1 = e1 +

1
t(t+1)2

e2, Et
2 = e2 +

t+2
t(t+1)2

e3 +
1

t3(t+1)2
e4, Et

3 = e3 +
3−t2

t(t+1)2
e4, Et

4 = e4

N 4
17 → N2(α)α ̸=0,1 Et

1 = −

√
1−α
α

te1 +

√
1−α
α

te2, Et
2 =

√
1 − αte1 +

t
√
1−α

e3, Et
3 =

α−1
α2 t2e3, Et

4 = −t2e4

N 4
04(α ̸= −1) → N3(i α−1

α+1 ) Et
1 = t 3

√
2

α+1 e1, E
t
2 = it

(
3
√

2
α+1 e1 −

3
√

2
α+1

2
e2 + e4

)
, Et

3 = te3, Et
4 = t2e4

Appendix

See Tables A and B.
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