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In this paper the description of solvable Lie algebras with tri-
angular nilradicals is extended to Leibniz algebras. It is proven 
that the matrices of the left and the right operators on the ele-
ments of Leibniz algebra have the upper triangular forms. We 
establish that solvable Leibniz algebra of a maximal possible 
dimension with a given triangular nilradical is a Lie algebra. 
Furthermore, solvable Leibniz algebras with triangular nilrad-
icals of the low dimensions are classified.
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1. Introduction

Leibniz algebras were introduced at the beginning of the 90s of the past century 
by J.-L. Loday [3]. They are a generalization of well-known Lie algebras, which admit 
a remarkable property that an operator of the right multiplication is a derivation.
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From the classical theory of Lie algebras it is well known that the study of finite-
dimensional Lie algebras was reduced to the nilpotent ones [11,12]. In the Leibniz algebra 
case there is an analogue of Levi’s theorem [4]. Namely, the decomposition of a Leib-
niz algebra into a semidirect sum of its solvable radical and a semisimple Lie algebra 
is obtained. The semisimple part can be described from simple Lie ideals (see [5]) and 
therefore, the main focus is to study the solvable radical.

The analysis of several works devoted to the study of solvable Lie algebras (for example 
[1,2,13–15], where solvable Lie algebras with various types of the nilradical were studied, 
such as naturally graded filiform and quasi-filiform algebras, Abelian, triangular, etc.) 
shows that we can also apply similar methods to solvable Leibniz algebras with a given 
nilradical. In fact, any solvable Lie algebra can be represented as an algebraic sum of 
a nilradical and its complimentary vector space. Mubarakzjanov proposed a method, 
which claims that the dimension of the complimentary vector space does not exceed the 
number of nil-independent derivations of the nilradical [12]. Extension of this method to 
Leibniz algebras is shown in [6]. Usage of this method yields a classification of solvable 
Leibniz algebras with the given nilradicals in [6–10].

In this article we present the description of solvable Leibniz algebras whose nilradical 
is a Lie algebra of upper triangular matrices. Since in the work [14] solvable Lie alge-
bras with the triangular nilradical are studied, we reduce our study to non-Lie Leibniz 
algebras.

Recall that in [14] solvable Lie algebras with the triangular nil-radicals of mini-
mum and maximum possible dimensions were described. Moreover, uniqueness of a Lie 
algebra of maximal possible dimension with the given triangular nilradical is estab-
lished.

In order to realize a goal of our study we organize the paper as follows. In Section 2
we give the necessary preliminary results. Section 3 is devoted to the description of 
finite-dimensional solvable Leibniz algebras with the upper triangular nilradical. We 
establish that such Leibniz algebras of minimum and maximum possible dimensions are 
Lie algebras. Finally, in Section 4 we present the complete description of the results of 
Section 3 in the low dimensions.

Throughout the paper we consider finite-dimensional vector spaces and algebras over 
the field C. Moreover, in a multiplication table of an algebra omitted products are as-
sumed to be zero and if it is not stated otherwise, we will consider non-nilpotent solvable 
algebras.

2. Preliminaries

In this section we give the basic concepts and the results used in the studying of 
Leibniz algebras with the triangular nilradicals.

Definition 2.1. An algebra (L, [−,−]) over a field F is called a Leibniz algebra if for any 
x, y, z ∈ L the so-called Leibniz identity
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[
x, [y, z]

]
=

[
[x, y], z

]
−
[
[x, z], y

]
holds.

Every Lie algebra is a Leibniz algebra, but the bracket in the Leibniz algebra does 
not possess a skew-symmetric property.

Definition 2.2. For a given Leibniz algebra L the sequences of two-sided ideals defined 
recursively as follows:

L1 = L, Lk+1 =
[
Lk, L

]
, k ≥ 1, L[1] = L, L[s+1] =

[
L[s], L[s]], s ≥ 1

are called the lower central and the derived series of L, respectively.

Definition 2.3. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there 
exists n ∈ N (respectively, m ∈ N) such that Ln = 0 (respectively, L[m] = 0).

It is easy to see that a sum of any two nilpotent ideals is nilpotent. Therefore the 
maximal nilpotent ideal always exists.

Definition 2.4. The maximal nilpotent ideal of a Leibniz algebra is said to be a nilradical 
of the algebra.

Recall that a linear map d : L → L of a Leibniz algebra L is called a derivation if for 
all x, y ∈ L the following condition holds:

d
(
[x, y]

)
=

[
d(x), y

]
+

[
x, d(y)

]
.

For a given element x of a Leibniz algebra L we consider a right multiplication operator 
Rx : L → L defined by Rx(y) = [y, x], ∀y ∈ L and a left multiplication operator
Lx : L → L defined by Lx(y) = [x, y], ∀y ∈ L. It is easy to check that the operator Rx

is a derivation. Derivations of this kind are called inner derivations.
Linear maps f1, . . . , fk are called nil-independent, if

α1f1 + α2f2 + . . . + αkfk

is not nilpotent for all values αi, except simultaneously zero.
Let R be a solvable Leibniz algebra with a nilradical N . We denote by Q the comple-

mentary vector space of the nilradical N in the algebra R.

Proposition 2.5. (See [6].) Let R be a solvable Leibniz algebra and N – its nilradical. 
Then the dimension of the complementary vector space Q is not greater than the maximal 
number of nil-independent derivations of N .
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Let us consider a finite-dimensional Lie algebra T (n) of the upper-triangular matrices 
with n ≥ 3 over the field of complex numbers. The products of the basis elements 
{Nij | 1 ≤ i < j ≤ n} of T (n), where Nij is a matrix with the only non-zero entry at 
i-th row and j-th column equal to 1, are computed by a rule

[Nij , Nkl] = δjkNil − δilNkj . (1)

For a natural number f let G(n, f) be a set of solvable Lie algebras of dimension 
1
2n(n− 1) + f with a nilradical T (n). Let Q = 〈X1, X2, . . . , Xf 〉, where Q is the com-
plementary vector space of the nilradical T (n) to an algebra from G(n, f).

Denote

[
Nij , X

α
]

=
∑

1≤q−p<n

aαij,pqNpq,
[
Xα, Nij

]
=

∑
1≤q−p<n

bαij,pqNpq,

[
Xα, Xβ

]
=

∑
1≤q−p<n

σαβ
pq Npq, (2)

where 1 ≤ α, β ≤ f and aαij,pq, b
α
ij,pq, σ

αβ
pq ∈ C, p < q ≤ n.

Let N be a vector column (N12N23 . . . N(n−1)nN13N24 . . . N(n−2)n . . . N1n)T then we 
have

RXα(N) = AαN, LXα(N) = BαN,

where Aα = (aαij,pq) and Bα = (bαij,pq), 1 ≤ i < j ≤ n, 1 ≤ p < q ≤ n are 1
2n(n − 1) ×

1
2n(n − 1) complex matrices.

The following lemma provides some information about the structure matrices above.

Lemma 2.6. (See [14].) The structure matrices Aα = (aαij,pq), 1 ≤ i < j ≤ n, 1 ≤ p <
q ≤ n have the following properties:

(i) They are upper triangular;
(ii) The only off-diagonal matrix elements that do not vanish identically and cannot be 

annulled by a redefinition of the elements Xα are:

aα12,2n, aαi(i+1),1n (2 ≤ i ≤ n− 2), aα(n−1)n,1(n−1);

(iii) The diagonal elements aαi(i+1),i(i+1), 1 ≤ i ≤ n −1 are arbitrary. The other diagonal 
elements satisfy

aαik,ik =
k−1∑
p=i

aαp(p+1),p(p+1), k > i + 1.



534 I.A. Karimjanov et al. / Linear Algebra and its Applications 466 (2015) 530–546
Lemma 2.7. (See [14].) The maximal number of non-nilpotent elements is

fmax = n− 1.

3. Main result

We denote by L(n, f) a set of all non-nilpotent solvable Leibniz algebras with a nil-
radical T (n) and a complementary vector space 〈X1, X2, . . . , Xf 〉.

For the brevity, further we shall not write the products [Nij, Nkl] which are easily 
obtained from (1).

Using the notations (2) we have

RXα(N) = AαN, LXα(N) = BαN,

where Aα = (aαij,pq), Bα = (bαij,pq), 1 ≤ i < j ≤ n, 1 ≤ p < q ≤ n.
Since the proof of the assertions concerning the elements of the matrix Aα in 

Lemma 2.6 uses only the property of derivation, one can check that it obviously ex-
tends to our case of the Leibniz algebras. For the matrix Bα however, we have the next 
result.

Lemma 3.1. The following relations hold:

bαij,pq = −aαij,pq, i + 1 < j, (p, q) 	= (1, n)

Proof. From Lemma 2.6 we conclude
[
N12, X

α
]

= aα12,12N12 + aα12,2nN2n,[
Ni(i+1), X

α
]

= aαi(i+1),i(i+1)Ni(i+1) + aαi(i+1),1nN1n, 2 ≤ i ≤ n− 2,[
N(n−1)n, X

α
]

= aα(n−1)n,(n−1)nN(n−1)n + aα(n−1)n,1(n−1)N1(n−1),

[
Nij , X

α
]

=
j−1∑
p=i

aαp(p+1),p(p+1)Nij , i + 1 < j.

It is easy to see that [Xα, N12] + [N12, Xα] belongs to the right annihilator of the 
algebra of L(n, f). From the chain of equalities

0 =
[
N12,

[
Xα, N12

]
+
[
N12, X

α
]]

=
[
N12,

n−1∑
i=3

bα12,2iN2i +
(
aα12,2n + bα12,2n

)
N2n

]

=
n−1∑
i=3

bα12,2iN1i +
(
aα12,2n + bα12,2n

)
N1n,

we deduce bα12,2j = 0, 3 ≤ j ≤ n − 1 and bα12,2n = −aα12,2n.
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Similarly, from

0 =
[
N1i,

[
Xα, N12

]
+
[
N12, X

α
]]

=
[
N1i,

n∑
j=i+1

bαijNij

]
=

n∑
j=i+1

bαijN1j , i > 2,

we derive bα12,ij = 0, 2 < i < j ≤ n.
From the equality

0 =
[
Ni(i+1),

[
Xα, N12

]
+

[
N12, X

α
]]
, i ≥ 2,

we get

bα12,12 = −aα12,12, bα12,1i = 0, 3 ≤ i ≤ n− 1.

Therefore, we obtain

[
Xα, N12

]
= −aα12,12N12 − aα12,2nN2n + bα12,1nN1n.

Applying analogous argumentations as we used above for the products with k ≥ 2,

[
N1k,

[
Xα, Ni(i+1)

]
+
[
Ni(i+1), X

α
]]
,[

Ni(i+1),
[
Xα, Ni(i+1)

]
+

[
Ni(i+1), X

α
]]
, 2 ≤ i ≤ n− 2,[

N1k,
[
Xα, N(n−1)n

]
+
[
N(n−1)n, X

α
]]
,

[
Ni(i+1),

[
Xα, N(n−1)n

]
+

[
N(n−1)n, X

α
]]
,[

N1k,
[
Xα, Nij

]
+

[
Nij , X

α
]]
,

[
Ni(i+1),

[
Xα, Nij

]
+

[
Nij , X

α
]]
, 1 < j − i < n− 1,[

N1k,
[
Xα, N1n

]
+

[
N1n, X

α
]]
,

[
Ni(i+1),

[
Xα, N1n

]
+

[
N1n, X

α
]]
,

we obtain

[
Xα, Ni(i+1)

]
= −aαi(i+1),i(i+1)Ni(i+1) + bαi(i+1),1nN1n, 2 ≤ i ≤ n− 2,[

Xα, N(n−1)n
]

= −aα(n−1)n,(n−1)nN(n−1)n − aα(n−1)n,1(n−1)N1(n−1) + bα(n−1)n,1nN1n,

[
Xα, Nij

]
= −

j−1∑
p=i

aαp(p+1),p(p+1)Nij + bαij,1nN1n, 1 < j − i < n− 1,

[
Xα, N1n

]
= bα1n,1nN1n.

From the chain of equalities

[
Xα, N1n

]
=

[
Xα, [N12, N2n]

]
=

[[
Xα, N12

]
, N2n

]
−

[[
Xα, N2n

]
, N12

]
=

[
−aα12,12N12 − aα12,2nN2n + bα12,1nN1n, N2n

]
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−
[
−

n−1∑
p=2

aαp(p+1),p(p+1)N2n + bα2n,1nN1n, N12

]

= −aα12,12N1n −
n−1∑
p=2

aαp(p+1),p(p+1)N1n = −
n−1∑
p=1

aαp(p+1),p(p+1)N1n,

we get [Xα, N1n] = −
∑n−1

p=1 aαp(p+1),p(p+1)N1n.
By induction on j we will prove

[
Xα, Ni(i+j)

]
= −

i+j−1∑
p=i

aαp(p+1),p(p+1)Ni(i+j), j − i ≥ 2. (3)

By the induction hypothesis, the following equalities hold

[
Xα, Ni(i+2)

]
=

[
Xα, [Ni(i+1), N(i+1)(i+2)]

]
=

[[
Xα, Ni(i+1)

]
, N(i+1)(i+2)

]
−
[[
Xα, N(i+1)(i+2)

]
, Ni(i+1)

]
= −

i+1∑
p=i

aαp(p+1),p(p+1)Ni(i+2), 1 ≤ i ≤ n− 2.

Let us suppose that (3) holds for j and we will show it for j + 1.
For i + j + 1 ≤ n − 1 we have

[
Xα, Ni(i+j+1)

]
=

[
Xα, [Ni(i+j), N(i+j)(i+j+1)]

]
=

[[
Xα, Ni(i+j)

]
, N(i+j)(i+j+1)

]
−

[[
Xα, N(i+j)(i+j+1)

]
, Ni(i+j)

]
=

[
−

i+j−1∑
p=i

aαp(p+1),p(p+1)Ni(i+j), N(i+j)(i+j+1)

]

−
[
−aα(i+j)(i+j+1),(i+j)(i+j+1)N(i+j)(i+j+1)

+ bα(i+j)(i+j+1),1nN1n, Ni(i+j)
]

= −
i+j∑
p=i

aαp(p+1),p(p+1)Ni(i+j+1).

The following chain of equalities completes the proof of the equality (3)

[
Xα, Nin

]
=

[
Xα, [Ni(n−1), N(n−1)n]

]
=

[
Xα, Ni(n−1)

]
, N(n−1)n] −

[
Xα, N(n−1)n

]
, Ni(n−1)]

=
[
−

n−2∑
aαp(p+1),p(p+1)Ni(n−1), N(n−1)n

]

p=i
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−
[
−aα(n−1)n,(n−1)nN(n−1)n − aα(n−1)n,1(n−1)N1(n−1)

+ bα(n−1)n,1nN1n, Ni(n−1)
]

= −
n−1∑
p=i

aαp(p+1),p(p+1)Nin.

Therefore, we obtain

[
Xα, N12

]
= −aα12,12N12 − aα12,2nN2n + bα12,1nN1n.[

Xα, Ni(i+1)
]

= −aαi(i+1),i(i+1)Ni(i+1) + bαi(i+1),1nN1n, 2 ≤ i ≤ n− 2,[
Xα, N(n−1)n

]
= −aα(n−1)n,(n−1)nN(n−1)n − aα(n−1)n,1(n−1)N1(n−1) + bα(n−1)n,1nN1n,

[
Xα, Nij

]
= −

j−1∑
p=i

aαp(p+1),p(p+1)Nij , j > i + 1.

A comparison of the above products with the notations in (2) completes the proof of 
the lemma. �
Lemma 3.2. For 1 ≤ α, β ≤ n we have [Xα, Xβ ] = σαβN1n for some σαβ ∈ C.

Proof. Consider

[
N12,

[
Xα, Xβ

]]
=

[[
N12, X

α
]
, Xβ

]
−

[[
N12, X

β
]
, Xα

]
=

[
aα12,12N12 + aα12,2nN2n, X

β
]
−

[
aβ12,12N12 + aβ12,2nN2n, X

α
]

= aα12,12
(
aβ12,12N12 + aβ12,2nN2n

)
+ aα12,2n

(
n−1∑
p=2

aβp(p+1),p(p+1)N2n

)

− aβ12,12
(
aα12,12N12 + aα12,2nN2n

)
− aβ12,2n

(
n−1∑
p=2

aαp(p+1),p(p+1)N2n

)

=
(
aα12,12a

β
12,2n − aβ12,12a

α
12,2n −

n−1∑
p=2

aαp(p+1),p(p+1)a
β
12,2n

+
n−1∑
p=2

aβp(p+1),p(p+1)a
α
12,2n

)
N2n.

On the other hand,

[
N12,

[
Xα, Xβ

]]
=

[
N12,

∑
σαβ
pq Npq

]
=

n∑
σαβ

2i N1i.

1≤q−p<n i=3
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Comparing coefficients at the basis elements we derive

σαβ
2i = 0, 3 ≤ i ≤ n.

For 2 ≤ i ≤ n − 2 we consider the chain of equalities

[
Ni(i+1),

[
Xα, Xβ

]]
=

[[
Ni(i+1), X

α
]
, Xβ

]
−
[[
Ni(i+1), X

β
]
, Xα

]
= aαi(i+1),i(i+1)

(
aβi(i+1),i(i+1)Ni(i+1) + aβi(i+1),1nN1n

)

+ aαi(i+1),1n

n−1∑
p=1

aβp(p+1),p(p+1)N1n

− aβi(i+1),i(i+1)
(
aαi(i+1),i(i+1)Ni(i+1) + aαi(i+1),1nN1n

)

− aβi(i+1),1n

n−1∑
p=1

aαp(p+1),p(p+1)N1n

=
(
aαi(i+1),i(i+1)a

β
i(i+1),1n + aαi(i+1),1n

n−1∑
p=1

aβp(p+1),p(p+1)

− aβi(i+1),i(i+1)a
α
i(i+1),1n − aβi(i+1),1n

n−1∑
p=1

aαp(p+1),p(p+1)

)
N1n.

In addition, the following identity holds

[
Ni(i+1),

[
Xα, Xβ

]]
=

[
Ni(i+1),

i−1∑
k=1

σαβ
ki Nki +

n∑
j=i+2

σαβ
(i+1)jN(i+1)j

]

= −
i−1∑
k=1

σαβ
ki Nk(i+1) +

n∑
j=i+2

σαβ
(i+1)jNij .

Therefore,

σαβ
ki = σαβ

js = 0, 1 ≤ k ≤ i− 1, 2 ≤ i ≤ n− 2, 3 ≤ j ≤ n− 1, j + 1 ≤ s ≤ n

and

[
Xα, Xβ

]
= σαβ

1(n−1)N1(n−1) + σαβ
1nN1n.

Similar arguments for the products

[
N(n−1)n,

[
Xα, Xβ

]]
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yield σαβ
1(n−1) = 0, which completes the proof of the lemma. For convenience let us omit 

the lower indexes of σαβ
1n . �

From the Leibniz identity

[
Xα,

[
Ni(i+1), X

α
]]

=
[[
Xα, Ni(i+1)

]
, Xα

]
−

[[
Xα, Xα

]
, Ni(i+1)

]
for 1 ≤ i ≤ n − 1 we obtain restrictions:

aαi(i+1),i(i+1)
(
aαi(i+1),1n + bαi(i+1),1n

)
= 0, 2 ≤ i ≤ n− 2,

aα12,12b
α
12,1n = aα(n−1)n,(n−1)nb

α
(n−1)n,1n = 0.

Let us list again the obtained products between the basis elements. For 1 ≤ α ≤ f we 
have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
N12, X

α
]

= aα12,12N12 + aα12,2nN2n,[
Ni(i+1), X

α
]

= aαi(i+1),i(i+1)Ni(i+1) + aαi(i+1),1nN1n, 2 ≤ i ≤ n− 2,[
N(n−1)n, X

α
]

= aα(n−1)n,(n−1)nN(n−1)n + aα(n−1)n,1(n−1)N1(n−1),

[
Nij , X

α
]

=
j−1∑
p=i

aαp(p+1),p(p+1)Nij , j > i + 1,

[
Xα, N12

]
= −aα12,12N12 − aα12,2nN2n + bα12,1nN1n,[

Xα, Ni(i+1)
]

= −aαi(i+1),i(i+1)Ni(i+1) + bαi(i+1),1nN1n, 2 ≤ i ≤ n− 2,[
Xα, N(n−1)n

]
= −aα(n−1)n,(n−1)nN(n−1)n − aα(n−1)n,1(n−1)N1(n−1) + bα(n−1)n,1nN1n,

[
Xα, Nij

]
= −

j−1∑
p=i

aαp(p+1),p(p+1)Nij , j > i + 1,

[
Xα, Xβ

]
= σαβN1n,

with restrictions on parameters:

aαi(i+1),i(i+1)
(
aαi(i+1),1n + bαi(i+1),1n

)
= 0, 2 ≤ i ≤ n− 2,

aα12,12b
α
12,1n = aα(n−1)n,(n−1)nb

α
(n−1)n,1n = 0.

Note that for solvable non-Lie Leibniz algebras of the set L(n, f) the following equality 
holds

[
Xγ , N1n

]
=

[
N1n, X

γ
]

= 0, 1 ≤ γ ≤ f. (4)

Indeed, if we assume the contrary, then taking into account that [Xγ , N1n] =
−[N1n, Xγ ] we can assume [Xγ , N1n] 	= 0 for some γ ∈ {1, . . . , f}.
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Simplifying the following products using the Leibniz identity

[
Xγ ,

[
N12, X

α
]
+
[
Xα, N12

]]
,

[
Xγ ,

[
Ni(i+1), X

α
]
+

[
Xα, Ni(i+1)

]]
,[

Xγ ,
[
N(n−1)n, X

α
]
+

[
Xα, N(n−1)n

]]
,

[
Xγ ,

[
Xα, Xβ

]
+
[
Xβ , Xα

]]
,[

Xγ ,
[
Xα, Xα

]]
,

we obtain

bα12,1n = bα(n−1)n,1n = σαα = 0, bαi(i+1),1n = −aαi(i+1),1n, σαβ = −σβα.

Thus we get a Lie algebra, which is a contradiction.

Corollary 3.3. For a Leibniz algebra of the set L(n, 1) the matrices of the left and right 
operators A = (aij,pq), B = (bij,pq) have the following properties:

(1 ) The maximum number of the off-diagonal elements of the matrix A is n − 1;
(2 ) The maximum number of the off-diagonal elements of the matrix B is n + 1.

Theorem 3.4. Any Leibniz algebra from L(n, n − 1) is a Lie algebra.

Proof. Making a suitable change of a basis we can assume that the operator RX1 acts 
as follows

[
N12, X

1] = N12 + a1
12,2nN2n,[

Ni(i+1), X
1] = a1

i(i+1),1nN1n, 2 ≤ i ≤ n− 2,[
N(n−1)n, X

1] = a1
(n−1)n,1(n−1)N1(n−1),[

N1j , X
1] = N1j , j > 2.

Since [N1n, X1] = N1n, then from Eq. (4) it follows that the algebra is a Lie alge-
bra. �

So we present a description of solvable Leibniz algebras with the nilradical T (n). 
Moreover, in the case of the maximal possible dimension we show that this algebra is 
a Lie algebra.

4. Illustration for low dimensions

In this section we give the classification of Leibniz algebras with nilradicals T (3)
and T (4).

Note that the Lie algebra T (3) is nothing but the Heisenberg algebra H(1). Solvable 
Leibniz algebras with the Heisenberg nilradical were described in [10].
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Therefore we consider the case n = 4. We know that the complimentary vector space 
to the nilradical T (4) has a dimension less than 4. In case when the dimension of the 
complementary space is equal to 3 we obtain a Lie algebra (see Theorem 3.4), which falls 
into the classification already obtained in [14]. So we will consider the dimension of the 
complimentary vector space to be equal to 1 and 2.

Note that the commutators of the elements in the nilradical T (4) have the form
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[N12, N23] = −[N23, N12] = N13

[N12, N24] = −[N24, N12] = N14

[N13, N34] = −[N34, N13] = N14

[N23, N34] = −[N34, N23] = N24.

(5)

Through this section in the table of multiplications of considered algebras these com-
mutators will be skipped.

4.1. The Leibniz algebras L(4, 1)

From the previous section we have that an algebra from L(4, 1) admits a basis 
{N12, N23, N34, N13, N24, N14, X} in which the table of multiplication has the following 
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[N12, X] = a12,12N12 + a12,24N24,

[X,N12] = −a12,12N12 − a12,24N24 + b12,14N14,

[N23, X] = a23,23N23 + a23,14N14,

[X,N23] = −a23,23N23 + b23,14N14,

[N34, X] = −(a12,12 + a23,23)N34 + a34,13N13,

[X,N34] = (a12,12 + a23,23)N34 − a34,13N13 + b34,14N14,

[N13, X] = −[X,N13] = (a12,12 + a23,23)N13,

[N24, X] = −[X,N24] = −a12,12N24,

[X,X] = σ14N14,

(6)

where

a12,12b12,14 = a23,23(a23,14 + b23,14) = (a12,12 + a23,23)b34,14 = 0.

Since L(4, 1) is a non-nilpotent Leibniz algebra we have (a12,12, a23,23) 	= (0, 0).

Case 1. Let a12,12 = 0. Then a23,23 	= 0, b23,14 = −a23,14 and b34,14 = 0.
Taking the change of basis as follows:

X ′ = 1
X, N ′

23 = N23 + a23,14
N14, N ′

34 = N34 −
a34,13

N13

a23,23 a23,23 2a23,23
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the multiplication (6) transforms into

[N12, X] = a12,24N24, [X,N12] = −a12,24N24 + b12,14N14,

[N23, X] = −[X,N23] = N23, [N34, X] = −[X,N34] = −N34,

[N13, X] = −[X,N13] = N13, [X,X] = σ14N14,

where (b12,14, σ14) 	= (0, 0).

Case 2. Let a12,12 	= 0, then b12,14 = 0. Taking the change of basis X ′ = 1
a12,12

X, we can 
assume a12,12 = 1.

Subcase 2.1. Let a23,23 = 0. Then b34,14 = 0.
Applying the change of basis

N ′
12 = N12 + a12,24

2 N24, N ′
34 = N34 −

a34,13

2 N13

the products (6) simplify to the following:

[N12, X] = −[X,N12] = N12, [N34, X] = −[X,N34] = −N34,

[N13, X] = −[X,N13] = N13, [N24, X] = −[X,N24] = −N24,

[N23, X] = a23,14N14, [X,N23] = b23,14N14,

[X,X] = σ14N14,

where (a23,14 + b23,14, σ14) 	= (0, 0).

Subcase 2.2. Let a23,23 	= 0. Then b23,14 = −a23,14.

Subcase 2.2.1. Let a23,23 = −1. Then substituting

N ′
23 = N23 − a23,14N14, N ′

12 = N12 + a12,24

2 N24

we derive an algebra with the following multiplication table:

[N12, X] = −[X,N12] = N12, [N23, X] = [X,N23] = −N23,

[N34, X] = a34,13N13, [X,N34] = −a34,13N13 + b34,14N14,

[N24, X] = −[X,N24] = −N24, [X,X] = σ14N14

where (b12,14, σ14) 	= (0, 0).
Note that by permuting the indices of the basis elements of the above algebra one 

obtains an algebra from Case 1.
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Subcase 2.2.2. Let a23,23 	= −1. Then b34,14 = 0.
Setting

N ′
12 = N12 + a12,24

2 N24, N ′
23 = N23 + a23,14

a23,23
N14,

N ′
34 = σ14

(
N34 −

a34,13

2(1 + a23,23)
N13

)
, N ′

24 = σ14N24, N ′
14 = σ14N14

we get an algebra with the following table of multiplication:

[N12, X] = −[X,N12] = N12, [N23, X] = −[X,N23] = a23,23N23,

[N34, X] = −[X,N34] = −(1 + a23,23)N34, [N13, X] = −[X,N13] = (1 + a23,23)N13,

[N24, X] = −[X,N24] = −N24, [X,X] = N14,

where (1 + a23,23)a23,23 	= 0.

Non-isomorphisms of the obtained algebras can be easily established by considering 
the dimensions of derived series of the algebras.

Thus, the following theorem is proved.

Theorem 4.1. An arbitrary non-Lie Leibniz algebra of the set L(4, 1) is isomorphic to 
one of the following pairwise non-isomorphic algebras:

L1 :
[N12, X] = a12,24N24, [X,N12] = −a12,24N24 + b12,14N14,

[N23, X] = −[X,N23] = N23, [N34, X] = −[X,N34] = −N34,

[N13, X] = −[X,N13] = N13, [X,X] = σ14N14,

where (b12,14, σ14) 	= (0, 0);

L2 :

[N12, X] = −[X,N12] = N12, [N34, X] = −[X,N34] = −N34

[N13, X] = −[X,N13] = N13, [N24, X] = −[X,N24] = −N24,

[N23, X] = a23,14N14, [X,N23] = b23,14N14,

[X,X] = σ14N14,

where (a23,14 + b23,14, σ14) 	= (0, 0);

L3 :

[N12, X] = −[X,N12] = N12,

[N23, X] = −[X,N23] = a23,23N23,

[N34, X] = −[X,N34] = −(1 + a23,23)N34,

[N13, X] = −[X,N13] = (1 + a23,23)N13,

[N24, X] = −[X,N24] = −N24,

[X,X] = N14,

where (1 + a23,23)a23,23 	= 0.
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4.2. The Leibniz algebras L(4, 2)

The classification of Leibniz algebras belonging to L(4, 2) is summarized in the fol-
lowing

Theorem 4.2. An arbitrary non-Lie Leibniz algebra of the set L(4, 2) admits a basis 
{N12, N23, N34, N13, N24, N14, X1, X2} in which the table of multiplication has the fol-
lowing form:

[
N12, X

1] = −
[
X1, N12

]
= N12,

[
N34, X

1] = −
[
X1, N34

]
= −N34,[

N13, X
1] = −

[
X1, N13

]
= N13,

[
N24, X

1] = −
[
X1, N24

]
= −N24,[

N23, X
2] = −

[
X2, N23

]
= N23,

[
N34, X

2] = −
[
X2, N34

]
= −N34,[

N13, X
2] = −

[
X2, N13

]
= N13,

[
X1, X1] = σ11N14,[

X2, X2] = σ22N14,
[
X1, X2] = σ12N14,

[
X2, X1] = σ21N14.

Proof. From Lemmas 3.1 and 3.2 we have

[
N12, X

1] = a1
12,12N12 + a1

12,24N24,[
X1, N12

]
= −a1

12,12N12 − a1
12,24N24 + b112,14N14,[

N23, X
1] = a1

23,23N23 + a1
23,14N14,[

X1, N23
]

= −a1
23,23N23 + b123,14N14,[

N34, X
1] = −

(
a1
12,12 + a1

23,23
)
N34 + a1

34,13N13,[
X1, N34

]
=

(
a1
12,12 + a1

23,23
)
N34 − a1

34,13N13 + b134,14N14,[
N13, X

1] = −
[
X1, N13

]
=

(
a1
12,12 + a1

23,23
)
N13,[

N24, X
1] = −

[
X1, N24

]
= −a1

12,12N24,[
N12, X

2] = a2
12,12N12 + a2

12,24N24,[
X2, N12

]
= −a2

12,12N12 − a2
12,24N24 + b212,14N14,[

N23, X
2] = a2

23,23N23 + a2
23,14N14,[

X2, N23
]

= −a2
23,23N23 + b223,14N14,[

N34, X
2] = −

(
a2
12,12 + a2

23,23
)
N34 + a2

34,13N13,[
X2, N34

]
=

(
a2
12,12 + a2

23,23
)
N34 − a2

34,13N13 + b234,14N14,[
N13, X

2] = −
[
X2, N13

]
=

(
a2
12,12 + a2

23,23
)
N13,[

N24, X
2] = −

[
X2, N24

]
= −a2

12,12N24

with the restrictions
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a1
12,12b

1
12,14 = a1

23,23
(
a1
23,14 + b123,14

)
=

(
a1
12,12 + a1

23,23
)
b134,14 = 0,

a2
12,12b

2
12,14 = a2

23,23
(
a2
23,14 + b223,14

)
=

(
a2
12,12 + a2

23,23
)
b234,14 = 0.

Taking the change of basis

X1′
=

a2
23,23

a1
12,12a

2
23,23 − a2

12,12a
1
23,23

X1 −
a1
23,23

a1
12,12a

2
23,23 − a2

12,12a
1
23,23

X2,

X2′
= −

a2
12,12

a1
12,12a

2
23,23 − a2

12,12a
1
23,23

X1 +
a1
12,12

a1
12,12a

2
23,23 − a2

12,12a
1
23,23

X2,

we deduce

[
N12, X

1] = −
[
X1, N12

]
= N12 + a1

12,24N24,
[
N23, X

1] = a1
23,14N14,[

X1, N23
]

= b123,14N14,
[
N34, X

1] = −
[
X1, N34

]
= −N34 + a1

34,13N13,[
N13, X

1] = −
[
X1, N13

]
= N13,

[
N24, X

1] = −
[
X1, N24

]
= −N24,[

N12, X
2] = a2

12,24N24,
[
X2, N12

]
= −a2

12,24N24 + b212,14N14,[
N23, X

2] = −
[
X2, N23

]
= N23 + a2

23,14N14,[
N34, X

2] = −
[
X2, N34

]
= −N34 + a2

34,13N13,[
N13, X

2] = −
[
X2, N13

]
= N13.

Applying the Leibniz identity for the following triples of elements:

(
N12, X

1, X2), (
N23, X

1, X2), (
N34, X

1, X2), (
X1, N23, X

2), (
X2, N12, X

1)
we get

a2
12,24 = a1

23,14 = a1
34,13 = a2

34,13 = b123,14 = b212,14 = 0.

Finally, taking the basis transformation:

N ′
12 = N12 +

a1
12,24

2 N24, N ′
23 = N23 + a2

23,14N14

we obtain the multiplication table listed in the assertion of the theorem. �
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