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Ground states for Potts model with competing
interactions on cayley tree
G.I.Botirov

Magolada Keli daraxtida aniglangan to'rtta spin giymatli o'zaro
ta'sir radiusi ikkiga teng bo'lgan Pottz modeli garalgan. Bu
model uchun davriy asosiy holatlar qurilgan va Peyerlis sharti
tekshirilgan.

Pacemarpusaerca mofens [lTorrea ¢ yerepms apavennsMn crip-
HA B ¢ PAIAYCOM B3aHMOIelcTeRs ara Ha geperse Kanu. Jaerca
NEePHOMIECKHE OCHOBHEIE cocTosHISA 3Toil Momemm. Takwe npo-
Bepserc yenopue [afiepaca,

1. Introduction

The state of a physical system having the lowest possible potential energy,
For example, an electron in the lowest energy orbital in a hydrogen atom is in
a ground state. The ground state of a physical system tends to be stable unless
energy is applied to it from the outside; states that are not the ground state have
a tendency to revert to the ground state, giving off energy in the process.

The ground states for models on the cubic lattice Z% were studied in many
works (see e.g. 15,6,8,9]). The lsing model, with two values of spin | was considered
and became actively researched in the 1990¥s and afterwards (see for example
[1113,10]).

In |[11] an lsing model on a Cayley tree with competing interactions is considered.
The goal of this paper is to study of (periodic and non periodic) ground states and
to verify the Peierls condition for the Potts model with competing interactions.

For the lsing model with competing interactions, in [12] the set of all weakly
periodic ground states corresponding to normal divisors of indices 2 and 4 of the
group representation of the Cayley tree is described.

In the Pirogov-Sinai theory configurations can be described by contours which
satisfy Peierls condition. This theory provides tools for a very detailed knowledge
of structure of Gibbs measures in a region in relevant parameters space [13].

Pirogov and Sinai developed a theory of phase transitions in systems satisfying
Peierls condition. W. Holsztynski and J. Slawny give a criterium for the Peierls
condition to hold and apply it to several systems. In particular they proved that
ferromagnetic system satishes the Peierls condition iff its (internal) symmetry
group is finite. And using an algebraic argument they show that in two dimensions
the symmetry groups of reduced translation invariant systems is finite |7].

The Potts model is a peneralization of the lsing model in which each lattice
gite contains an entity (a spin) that can be in one of g states. Potts models are
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usetful for describing the absorption of molecules on crystalline surfaces and the
behavior of foams, for example, and exhibit a discontinuous or continuous phase
transition depending on the value of g.

The paper 15 organized as follows. In Section 2 we give definitions of Cayley
tree, configuration space and the Potts model with competing interactions. In

Section 3 we construct periodic ground states. Iln Section 4 we check Peierls
condition for the model.

2. Definitions and statement of problem

2.1. Cayley tree.

The Cayley tres I'* of order k > 1 is the infinite tree (ie., a cycle-free graph)
each of whose vertices has exactly k + 1 outgoing edges. Let I'* = (V, L. 1), where
V is the set of vertices of I'*, and L is the set of edges, and i is the incidence
function, which takes each edge [ € L to its endpoints =,y € V_ If i(I) = {=.y},
then the vertices x and y are called nearest neighbors, and we write < =,y = The
distance d{z.y). z,y € V, on the Cayley tree is defined by the formula

diz,y)=min{d: Ix =2, T1,...,Fd—1; Ta=PEV
such that z =< ®o, 21 >,.... < Td—1,.24 > }.

There exists a one-to-one correspondence between the set V' oof vertices of the
Cayley tree of order k& > 1 and the group Gk that is the free product of £+ 1
cyclic groups of order 2 with generators a1, a2,. .. ,ak+1 [8]-

2.2 Configuration space.

Let & ={1.2.....9}. g = 2. A conhgurations on V iz dehned as a function
¥ € V — a{z) € &; the set of all confizurations coincides with 2 = &Y. Let
A C V. By {14 we denote the space of configurations defined on A.

2.3 The Potts model.

R B. Potts defined the former model in 1952, at the suggestion of . Domb. He
actually defined two models. The first i3 known as the "2, model and supposes
that at each site of a lattice there iz a two-dimensional unit vector which can
point in one of N equally spaced directions. Two adjacent vectors interact with
interaction energy proportional to their scalar product.

The second model is the one that will be discussed here, and referred to simply
as "the Potts model". This can be formulated on any graph @, i.e. on any set of
sites, and edges joining pairs of sites.

We consider the Potts model with competing interactions, where the spin takes
values in the set & = {00, 1.3..... g9}, on the Cayley tree which is defined by the

following Hamiltonian
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Hio)=d1 > Somoi+B Y Satmion (1)
L T =, gE
el diz =2

where Ji, Ja € R are coupling constants and o a configuration an V' [4].
In this paper we consider the case g = 4.

3. Ground states

Ground states can be defined in two ways, yielding, roughly, zero-temperature
version of Gibbs states and equilibrium states, respectively. The first definition is
that any local perturbation of the state increases its energy; the second, applicable
to periodic configurations, is that specific energy is minimal,

For a pair of configurations o and ¢ coinciding almost everywhere, i.e., everywhere
except at a finite number of points, we consider the relative Hamiltonian H{e, o),
of the difference between the energies of the configurations o and &, ie.,

Hio,o)=d > (Fotmotn —Fomewm) 2 Y (Bowiow) — Somiet) (2)

&5 255
where J = (J;, J3) € R? is an arbitrary fixed parameter,
We suppose that M is the set of unit balls with vertices in V. The restriction
of a configuration o on a ball b £ M is called a bounded configuration o,. We
define the energy of the configuration o, on the ball b as

; : I
Ulos) = U, J) = EJI Z Botzia(y) T J2 Z Oc(x)ariy) ()
el Fribgu

where J = (J1,J2) € K.

Using a combinatorial caleulations one can prove the following

Lemma 3.1. 1) Let & be a confipuration with o3{c,) = 4, {where ¢ is the
center of the ball b}, and |{z : osiz) = 1}| = m, |{z : olz) = 2}| =n, {z:
olx) =3} =1 {z:o(x) =4}| = r. Here |A| denotes the number of elements of
A Then U{eg) has the following form

Uley) = U plm,n, v, Ji Jo) = = (§imtfynddg+-83,0) d3+(C2 +C2LOFHCE) Jo

(4)

B3| =

where m.n,Lre NU{0}, m+n+l+r=k+1and J=(J;,Ja) € R%
2} For any configuration o3 we have

Ufay) € {Usx(m,n, e, Jy, da): mon,l,r.e NU{0}, with
m+n+l+r=k+1and J=(J;.2) € B?}.

The following lemma can be easily proved.
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Lemma 3.2. Belative Hamiltonian (2) has the form

H(o,p) =Y (Ulos) — Ufsn)).

be M

Lrenote

_F'I-i!' = F;t]l[ﬂ} = -{J = P'urj,: :Ub.{ﬂf;:' = 1-1 U-E{E'_;I:I == P}‘ ;i 1'2":1‘ 4:
Qb= lov: oule) =i, |FV| =m, |FY| = n, |F3Y| =1},
Let 51 be the group of permutations on {1,2,3,4}.
cl = U =0 ), where for m = (x(1),7(2),7(3),7(4)) € Sy we put
’ mE S
(O ) ={me:a el |} with (vo)(z) = w{a(x)).

T, m, [

We define a (7, — periodic configuration as a configuration o{z) that is invariant
under a finite-index subgroup i Gk, 1.e., o(yr) = o(x) for any » € G and
Yy e G For a iven periodic configuration, the index of the subgroup iz called the
configuration period. A configuration which is invariant under all translations is
gaid to be translationally invariant.

Theorem 3.3. For any class l!'__':n\"n]- and for any bounded configuration or €

-I"__"“’_1 ; there exists a periodic configuration ¢ with period non exceeding 4 such that
P £ C’;J for any b’ € M and ¢ = op.

Proof: Fnr arbitrary given class Gh:' g and o £ f'{ J g Wwe shall construct
configpuration ¢ as follows. Without ]'DE.':- uf generality we can take b as the ball
with the center ¢ € Gi (here € is the identity if Gi), ie. b = {e,a1,--- ,ars1}.
Agsume opfe) =i wherei =1,2, 3 4.

Consider

Héi‘- ={reGy: Z wilxz) —even, Z wil{z) —even},

FENL\(FEPuFfh jerMurih

where w;{x) is the number of a; in z € G, Since H " is the subgroup of index

4 in G, the quotient group has form Gi/H) = {H“:' HY HEY HYYY with the
oo sets

fotreq: 50 wtessm 50 e
FENR\FIP Rt jeFyurtY
A W T

_;.'Erv.-'k".,:Fj':‘}uFé“:'] L i
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HY ={xeGy: 3 wilz)—odd, S wjla) —odd).
FENR\ (R uFst) jeFtur!

We continue the bounded configuration oy, € G::?n‘, to whole lattice I'* (which
we denote by ) by '

1, ifze Hy';
ola) =4 B HzeHD;
3, 1frEHm
4, l'f.TEHE :

S0 we obtain a periodic configuration o with period 4 (=index of the subgroup);
then by the construction o, = m,. Now we shall prove that all restrictions @, ¥ €
M of the mnﬁg‘utatinn @ belong € Let g5(x) = |Si(z) nH;|. j=0,1,2,3:

m.n;l"

where Si({z) = {y € Gk :< x,y >}, the set of all nearest neighbors of = € Gi.
Denote l.’.;!l[ ) = (gulx),q1(x). qz(x), ga(z)). We note |15] that for every z € G
there i# a permutation 7, of the coordinate of the vector Q&) (where & as before
is the identity of G} such that m.Q{e) = Q{=x).
Maoreover, it i8 easy to see that

Qle), o Hfu}1
Q{_r} — {?1{6},QD[E}1qg[e},qﬂe}h ifzre H[ﬂ

(q2(e).aa(e). qo(e) qi(e)), ifz € Hm.-
(qa(e),qale), qi(e) qole)), if = € H5".

Thus for any &' € M we have (i) if o € H&,i} {where as before ¢y is the center
of &) then y = o up to rotation; (ii) if ¢ £ H;‘” then ¢y = mwi(oy) where

- ( AR E ), then @, = o3, up to rotation; (iii) if o & Hé‘ﬂ' then

1 8 3 2
H 1 2 3 : S
iy = Taloy) where ma = 9 5 0 1) then @, = o up to rotation; (iv) if

gl Héﬂ then p = wa(os) where 13 = ( g é f g ), then i = o up to

rotation. Bince the energy of a configuration o and w{os) for arbitrary = € 54 is

.t for any &' € M. Theorem is proved.
Definition 3.4. A confizuration o is called a ground state of the relative
Hamiltonian H if

Uley) = min{U; p{m,n, L Jy, Ja) r 6 =1,2,3; m,n,l € Nu {0}
withO0<m+4n+I{<k+1}for any be M.

equal we get e £ et

Denote by A; x(m, n.l) the set of points (J1..J2) such that

A; plmyn ) = {1, Jo) t U plm m L Jy, Jo) < U p(m' 0l U, Jy, b)),
for any m', n' F e Nui{0}, 7=1,23,4}.
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Let GS(H ) be the set of all ground states of the relative Hamiltonian H (see
(2)).

Theorem 3.5. (i) If J = (0,0) then GS(H) = 1.

(ii) If J € A x(m, 1) then GS(H) = {r{c'"_ ) : 7€ 51}, where ') €0

v e v

such that (o0t s €Y  foranybeM, 0<m4n+l<k+1,i=1234

“Ffmond
Proof: Case (i) is trivial. (ii) for a given configuration op which makes [{oy)
minimal, by Theorem 3.3 one can construct the periodic ground states r:rf?ij_"_E
with period non exceeding four. For each case the exact number of such ground
states coincides with number of the configurations o, which make U{oy) minimal.

Theorem is proved.

4. The Peierls condition

Denote by U the collection of all possible values of U {1 ) for any configuration
as, be M.

Put '™ — min{l' : / £ U} and

do = min{UWU e U : U = ™=} — ymin,

Definition 4.1. Let &5 be the set of all ground states of relative Hamiltonian
H. A ball b e M is said to be an tmproper ball of the configuration o if o5 # @y
for any » € GS. The union of improper balls of a configuration & is called the

boundary of the configuration and denoted by d(a).

Definition 4.2. The relative Hamiltonian H with the set of ground states G5
satisfies the Peierls condition if for any € G5 and any configuration o coinciding
almost everywhere with o (ie. [{z € V : o(x) # plx)}| < o)

H(o,p) = Ali{a)|

where A is a positive constant which does not depend on o, and |8{7)| iz the
number of balls in 8(c).

Theorem 4.3 If J # ((1.0) then the Peierls condition is satishied.

Proof: Note that [U| = 1 if and only if J = (0,0), consequently Ay > 0 if
J £ (0,0).

Suppose 7 coincides almost everywhere with a ground state € G5{H) then
we have U{ay) — Ufee) = Ao for any b € 6(a) since ¢ is a ground state. Thus

H(o,p) =Y (Ulos)—Ulws)) = > (Ulow) — Ules)) = Aol@(a)].
be M bediz)

Therefore, the Peierls condition is satished for A = Aj. The theorem is proved.
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