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Abstract In this paper we study subalgebras of complex finite dimensional evolution alge-
bras. We obtain the classification of nilpotent evolution algebras whose any subalgebra is
an evolution subalgebra with a basis which can be extended to a natural basis of algebra.
Moreover, we formulate three conjectures related to the description of such non-nilpotent
algebras.
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1 Introduction

Nowadays, the algebraic approach is effectively used in the study of the genetics and dynam-
ical systems in population biology. In 20s and 30s of the last century the new object was
introduced to mathematics, which was the product of the interactions between Mendelian
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genetics and mathematics. One of the first scientists who gave an algebraic interpretation
of the “ × ” sign, which indicated sexual reproduction was Serebrowsky [13]. Etherington
introduced the formal language of abstract algebra to the study of the genetics [6, 7]. An
algebraic approach in genetics consists of the study of various types of genetic algebras
(such as algebras of free, “self-reproductive” and bisexual populations, Bernstein algebras
and etc.). Until 1980s, the most comprehensive reference in this area was Wörz-Busekros’s
book [15]. A good survey on algebraic structure of genetic inheritance is the Reed’s article
[11]. More recent results, such as genetic evolution in genetic algebras, can be found in the
Lyubich’s book [10].

Recently in the book of J.P. Tian [14] a new type of evolution algebra has been intro-
duced. This algebra describes some evolution laws of the genetics. The study of evolution
algebras constitutes a new subject both in algebra and the theory of dynamical systems. In
the Tian’s book a foundation of the framework of the theory of evolution algebras is estab-
lished and some applications of evolution algebras in the theory of stochastic processes and
genetics are discussed.

Evolution algebras are in general non-associative and do not belong to any of the well-
known classes of the non-associative algebras. In fact, nilpotency, right nilpotency and
solvability might be interpreted in a biological way as a various types of vanishing (“anni-
hilation”) of populations. Although an evolution algebra is an abstract system, it gives an
insight for the study of non-Mendelian genetics. For instance, an evolution algebra can be
applied to the inheritance of organelle genes. One can predict, in particular, all possible
mechanisms to establish the homoplasmy of cell populations.

Recently, Rozikov and Tian [12] studied algebraic structures of evolution algebras asso-
ciated with Gibbs measures defined on some graphs. In the papers [2, 5, 9] derivations,
some properties of chain of evolution algebras and dibaric property of evolution algebras
are studied. A connection between certain algebraic properties of evolution algebras (right
nilpotency, nilpotency, solvability and etc.) and matrix of the structural constants have been
investigated in [1, 3, 4].

It is remarkable that a subalgebra and an ideal of a genetic algebra of population, biolog-
ically can be interpreted correspondingly as a subpopulation and a dominant subpopulation
with respect to mating.

This paper is devoted to study of subalgebras of finite-dimensional evolution algebras.
In order to achieve our goal we organize the paper as follows. In Section 2, we give

some necessary notions and preliminary results about evolution algebras. We consider sev-
eral types of subalgebras of evolution algebras and present examples of difference of such
subalgebras as well. Section 3 is devoted to description of evolution algebras of permuta-
tions for which any subalgebra is an evolution subalgebra with a natural basis which can be
extended to a natural basis of the algebra (complete evolution algebra). In order to list two-
dimensional evolution algebras we identify their subalgebras. In Section 4, we classify the
nilpotent complex complete evolution algebras. In Section 5, we formulate three conjectures
related to the description of such non-nilpotent algebras.

Through the paper all algebras are assumed to be complex and finite-dimensional.

2 Preliminaries

In this section we give necessary definitions and preliminary results to obtain main results
of the paper. Let us define the main object of this work - evolution algebra.
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Definition 2.1 [14] Let E be an algebra over a field F . If it admits a basis {e1, e2, . . . } such
that

ei · ej = 0 f or i �= j, ei · ei =
∑

k

ai,kek f or any i,

then algebra E is called evolution algebra.

The basis {e1, e2, . . . } is said to be natural basis of evolution algebra E. It is remarkable
that this type of algebra depends on the natural basis {e1, e2, . . . }.

We denote by A = (aij ) the matrix of the structural constants of the evolution
algebra E.

Definition 2.2 [14] Let E be an evolution algebra and E1 be a subspace of E. If E1 has
a natural basis {ei | i ∈ �1} which can be extended to a natural basis {ej | j ∈ �} of E,

then E1 is called an evolution subalgebra, where �1 and � are index sets and �1 is a subset
of �.

In fact, for a linear subspace E1 of evolution algebra E we can consider three concepts
of a subalgebra.

(1) E1 is a subalgebra in ordinary sense;
(2) E1 is a subalgebra and there exists a natural basis of E1;
(3) E1 is a subalgebra and there exists a natural basis of E1 which can be extended to the

natural basis of E.

Note that Definition 2.2 agrees with the third concept of a subalgebra.
Below we present examples which show that concepts 1–3 are different in general.

Example 2.3 Let E be a three-dimensional evolution algebra with a natural basis {e1, e2, e3}
and the table of multiplication

e1 · e1 = e1 + e2, e2 · e2 = −e1 − e2, e3 · e3 = e2 + e3.

It is not difficult to see that E1 =< e1 + e2, e2 + e3 > is a subalgebra, but E1 is not an
evolution subalgebra (that is, there does not exist a natural basis of E1).

Indeed, if we assume the contrary, i.e., in the subspace E1 there exists a natural basis
{f1, f2}, then

f1 = α1(e1 + e2) + α2(e2 + e3), f2 = β1(e1 + e2) + β2(e2 + e3),

with α1β2 − α2β1 �= 0.
From the condition f1 · f2 = 0 we derive

α1 = α2 = 0 or α2 = β2 = 0 or β1 = β2 = 0.

Consequently, we get a contradiction with the assumption that {f1, f2} is a natural basis
of E1.

Example 2.4 Let E be a three-dimensional evolution algebra with a natural basis {e1, e2, e3}
and the following table of multiplication

e1 · e1 = e1 + e2 + e3, e2 · e2 = −e1 − e2 + e3, e3 · e3 = 0.
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It is not difficult to see that E1 =< e1 + e2, e3 > is an evolution algebra with a natural
basis {e1 + e2, e3}, but this basis can not be extended to the natural basis of evolution
algebra E.

If we assume that there exists a natural basis {f1, f2} of E1 such that {f1, f2, f3} is the
natural basis of E, then

f1 = α1(e1 + e2) + α2e3, f2 = β1(e1 + e2) + β2e3, f3 = γ1e1 + γ2e2 + γ3e3.

From conditions f1 · f3 = f2 · f3 = 0 we deduce α1 = β1 = 0 or γ1 = γ2 = 0.
Therefore, we get a contradiction with the assumption that {f1, f2, f3} is a basis.

For the sake of convenience, we introduce the following definition.

Definition 2.5 An evolution algebra E is said to be complete if any subalgebra of E is
an evolution subalgebra with a natural basis which can be extended to the natural basis
of E.

In [14] the conditions for basis transformations that preserve naturalness of the basis are
given. The relation between the matrices of structure constants in a new and old natural
basis is established in terms of a new defined operation on matrices, as well. Since that
relation is not practical for our further purposes, we give the following brief version of
isomorphisms.

Let us consider non-singular linear transformation T of a given natural basis {e1, . . . , en}
with a matrix (tij )1≤i,j≤n in this basis and

fi =
n∑

j=1

tij ej , 1 ≤ i ≤ n.

This transformation is isomorphism if and only if fi · fj = 0 for all i �= j .
In the following theorem we present a list (up to isomorphism) of 2-dimensional

evolution algebras.

Theorem 2.6 [4] Any 2-dimensional non-abelian evolution algebra E is isomorphic to one
of the following, pairwise non-isomorphic, algebras:

1. dim E2 = 1

• E1 : e1e1 = e1,
• E2 : e1e1 = e1, e2e2 = e1,
• E3 : e1e1 = e1 + e2, e2e2 = −e1 − e2,
• E4 : e1e1 = e2.

2. dim E2 = 2

• E5 : e1e1 = e1 + a2e2, e2e2 = a3e1 + e2, 1 − a2a3 �= 0, where E5(a2, a3) ∼=
E′

5(a3, a2),
• E6 : e1e1 = e2, e2e2 = e1 + a4e2,

where for a4 �= 0, E6(a4) ∼= E6(a
′
4) ⇔ a′

4
a4

= cos 2πk
3 + i sin 2πk

3 for some k =
0, 1, 2.
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Consider the following k-dimensional evolution algebras

ESk :
{

ei · ei = ei+1, 1 ≤ i ≤ k − 1,

ek · ek = e1,
ENk :

{
ei · ei = ei+1, 1 ≤ i ≤ k − 1,

ek · ek = 0.

In [8] the authors describe a complex evolution algebra En,π (a1, a2, . . . , an) with a basis
{e1, e2, . . . , en} and the table of multiplications as follows:

{
ei · ei = aieπ(i), 1 ≤ i ≤ n,

ei · ej = 0, i �= j,

where π is an element of the group of permutations Sn. Namely, the following assertion is
true.

Theorem 2.7 An arbitrary evolution algebra En,π (a1, a2, . . . , an) is isomorphic to
the direct sum of evolution algebras ESp1 , ESp2 , . . . , ESps , ENk1 , ENk2 , . . . , ENkr ,

i.e.,

En,π (a1, a2, . . . , an) ∼= ESp1 ⊕ ESp2 ⊕ · · · ⊕ ESps ⊕ ENk1 ⊕ ENk2 ⊕ · · · ⊕ ENkr ,

where
s∑

i=1

pi +
r∑

j=1

kj = n

We introduce the following sequences:

E1 = E, Ek =
k−1∑

i=1

EiEk−i , k ≥ 1;

E<1> = E, E<k> = E<k−1>E, k ≥ 1.

Definition 2.8 [1] An evolution algebra E is called nilpotent (resp. right nilpotent) if there
exists n ∈ N (resp. s ∈ N) such that En = 0 (resp. E<s> = 0) and the minimal such
number is called the index of nilpotency (resp. right nilpotency).

In the paper [1], it is proved that the notions of nilpotentcy and right nilpotentcy are
equivalent. Moreover, the following theorem is true.

Theorem 2.9 [1] Let E be an n-dimensional evolution algebra. Then E is nilpotent if and
only if the matrix of structure constants A can be transformed by permutation of the natural
basis to the following form:

A =

⎛

⎜⎜⎜⎜⎜⎝

0 a12 a13 . . . a1n

0 0 a23 . . . a2n

0 0 0 . . . a3n

...
...

...
. . .

...

0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
.

The next theorem gives the classification of evolution algebras of maximal possible index
of nilpotency.
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Theorem 2.10 [1] Any n-dimensional complex evolution algebra with maximal index of
nilpotency is isomorphic to one of the pairwise non-isomorphic algebras with the following
matrix of structural constants

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 a13 . . . a1,n−1 0

0 0 1 . . . a2,n−1 0

0 0 0 . . . a3,n−1 0
...

...
... · · · ...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where one of non-zero aij can be chosen equal to 1.

The set of all evolution algebras whose matrices of structural constants have the form of
Theorem 2.10 is denoted by ZNn.

3 Main result

First we investigate which evolution algebras of the list of Theorem 2.6 are complete (or
not).

Proposition 3.1 Evolution algebras E1 and E4 are complete.

Proof Since E is two-dimensional, then any non-trivial subalgebra of E is one-dimensional.
Let E′

1 be a one-dimensional subalgebra of E1 and E′
1 =< x > with x = A1e1 + A2e2.

Consider
x · x = (A1e1 + A2e2) · (A1e1 + A2e2) = A2

1e1

On the other hand,
x · x = αx = α(A1e1 + A2e2).

Then A2
1 = αA1 and αA2 = 0.

• If α = 0, then A1 = 0 and {e2} is the basis of E′
1. Obviously, this basis is extendable

to the natural basis {e1, e2} of E1.
• If α �= 0, then A1 = α,A2 = 0 and {e1} is the basis of E′

1, which is also extendable to
the natural basis of E1.

The proof of the proposition regarding the algebra E4 is carried out in a similar way.

Proposition 3.2 Evolution algebras E2, E3, E5 and E6 are not complete.

Proof 1. Let E′
2 be a one-dimensional subalgebra of E2 and E′

2 =< x > with x = A1e1 +
A2e2. The equality x · x = αx implies A2

1 + A2
2 = αA1 and αA2 = 0. We are seeking

a subalgebra with a natural basis that can not be extended to a basis of the algebra. Thus,
α = 0.

We set A2 = iA1. Then x = A1(e1 + ie2). Let us assume that the basis {x} can be
extended to the natural basis of E2, that is, there exists y ∈ E2 such that {x, y} is a natural
basis of E2. Let y = B1e1 + B2e2, then

0 = x · y = A1(e1 + ie2) · (B1e1 + B2e2) = A1(B1 + iB2)e1.
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Hence B2 = iB1 and we obtain a contradiction with the linear independence of elements
x and y. Thus, the evolution algebra E2 is not complete.

2. Let E′
3 =< x > be a one-dimensional subalgebra of E3 with x = A1e1 + A2e2.

Putting A1 = A2 = 1 we conclude that E′
3 =< x > is a subalgebra. Let us assume that

x = e1 + e2 can be extended to the natural basis of E3, then there exists y = B1e1 + B2e2,

such that {x, y} is a natural basis of E3.
From the following equality

0 = x · y = (e1 + e2) · (B1e1 + B2e2) = (B1 − B2)e1 + (B1 − B2)e2,

we derive B2 = B1, which is a contradiction with the condition of {x, y} being a basis.
Therefore, evolution algebra E3 is not complete.
3. The element x = A1e1 + A2e2 forms a basis of a one-dimensional subalgebra of E5.

Therefore, αx = x ·x for some α ∈ C. Note, that the condition dimE5 = 2 implies x ·x �= 0
(consequently α �= 0). Without loss of generality we can assume that α = 1. Then x = x ·x
deduce {

A2
1 + A2

2a3 = A1,

A2
1a2 + A2

2 = A2.
(3.1)

It is not difficult to check that the system of Eq. 3.1 has a solution A1, A2 such that
A1A2 �= 0. Indeed, if a2 = a3 = 0, then A1 = A2 = 1 is a solution of the Eq. 3.1.

Let us assume that (a2, a3) �= (0, 0) then, without loss of generality, we can suppose
a3 �= 0. Then from the Eq. 3.1 we have

A2 = A1

a3
((a2a3 − 1)A1 + 1), (3.2)

A3
1 + 2

a2a3 − 1
A2

1 + a3 + 1

a2a3 − 1
A1 − 1

(a2a3 − 1)2
= 0. (3.3)

Note that the Eq. 3.3 with respect to A1 has three solutions and one of them is not equal
to − 1

a2a3−1 . Recall that all solutions equal to − 1
a2a3−1 has the following cubic equation

A3
1 + 3

a2a3 − 1
A2

1 + 3

(a2a3 − 1)2
A1 + 1

(a2a3 − 1)3
= 0.

Therefore, the Eq. 3.1 has a solution A1, A2 with A1A2 �= 0. Consequently, there exists
a subalgebra E′

5 =< x > with x = A1e1 + A2e2, where A1A2 �= 0.
The basis of this subalgebra can not be extended to a natural basis of E5. Indeed, if

y = B1e1 + B2e2 with the condition that {x, y} is the natural basis of E, then

0 = x · y = (A1e1 +A2e2) · (B1e1 +B2e2) = (A1B1 +A2B2a3)e1 + (A1B1a2 +A2B2)e2,

which implies
A1B1 + A2B2a3 = 0,

A1B1a2 + A2B2 = 0.

Since A1A2(1−a2a3) �= 0, we get B1 = B2 = 0. It is a contradiction with the condition
of {x, y} being a basis.

Therefore, two dimensional evolution algebra E5 is not complete.
4. The proof that the algebra E6 is not complete is analogous.

Next, we present a result on preservation of the completeness of an evolution algebra
which is a direct sum of a complete evolution algebra and an abelian algebra.

Proposition 3.3 Let E be an n-dimensional complete evolution algebra. Then the evolution
algebra E ⊕ C

k is also complete.
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Proof Let {e1, e2, . . . , en, h1, h2, . . . , hk} be a basis of E ⊕C
k and M be an s-dimensional

subalgebra of E ⊕ C
k . We set {x1, x2, . . . , xs} as a basis of M and xi =

n∑
j=1

βi,j ej +
k∑

j=1
γi,j hj .

Consider

xi · xj =
n∑

t=1

βi,tβj,t

n∑

k=1

at,kek, 1 ≤ i, j ≤ s.

Since xi ·xj belong to M , then the elements
n∑

t=1
βi,tβj,t

n∑
k=1

at,kek are expressed by linear

combinations of elements yi =
n∑

j=1
βi,j ej , 1 ≤ i ≤ s. Consider N =< y1, y2, . . . , ys >. It

is easy to see that N is a subalgebra of E of dimension s′ ≤ s.
For the sake of convenience, by renumeration of indexes, we can assume that basis of N

is {y1, y2, . . . , y
′
s}.

If s′ = s, then using conditions of proposition we can find a natural basis {y1, y2, . . . ,

ys, z1, z2, . . . , zn−s} of E. Thus the following basis {x1, x2, . . . , xs, z1, z2, . . . , zn−s ,

h1, h2 . . . , hk} is a natural basis of E ⊕ Ck .
If s′ < s, then by elementary transformation of matrices we conclude

⎛

⎜⎜⎜⎝

β1,1 . . . β1,n γ1,1 . . . γ1,k

β2,1 . . . β2,n γ2,1 . . . γ2,k

...
...

...
...

...
...

βs,1 . . . βs,n γs,1 . . . γs,k

⎞

⎟⎟⎟⎠ ∼

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1,1 . . . β1,n γ1,1 . . . γ1,k

β2,1 . . . β2,n γ2,1 . . . γ2,k

...
...

...
...

...
...

βs′,1 . . . βs′,n γs′,1 . . . γs′,k
0 . . . 0 γ ′

s′+1,1 . . . γ ′
s′+1,k

...
...

...
...

...
...

0 . . . 0 γ ′
s,1 . . . γ ′

s,k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, the following elements

x′
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑
j=1

βi,j ej +
k∑

j=1
γi,j hj 1 ≤ i ≤ s′

k∑
j=1

γ ′
i,j hj s′ + 1 ≤ i ≤ s

form the natural basis of M .
Now, we show that this basis is extendable to the natural basis of E ⊕ C

k . Due
to N being a subalgebra of E, we derive the existence of a natural basis {y1, y2, . . . ,

ys′ , z1, z2, . . . , zn−s′ } of E. It is not difficult to check that the following basis

{x′
1, x

′
2, . . . , x

′
s′ , z1, z2, . . . , zn−s′ , x′

s′+1, x
′
s′+2, . . . , x

′
s , h

′
1, h

′
2 . . . , hk+s′−s}

is the natural basis of E ⊕ C
k, where {h′

1, h
′
2 . . . , hk+s′−s} are the complementary basis

elements to {x′
s′+1, x

′
s′+2, . . . , x

′
s} in C

k .

Let E be an n-dimensional evolution algebra such that E = E1 ⊕ E2, where E1 and E2
are evolution subalgebras of E.
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Proposition 3.4 Let E be a complete evolution algebra. Then the subalgebras E1 and E2
are also complete.

Proof Let E′
1 be a subalgebra of E1, then E′

1 is a subalgebra of E. Therefore there
exists a natural basis {e′

1, e
′
2, . . . , e

′
m} of E′

1 which can be extended to the natural basis
{e′

1, e
′
2, . . . , e

′
m, xm+1, xm+2, . . . , xn} of E. Since E = E1 ⊕ E2, then xj = yj + zj with

yj ∈ E1, zj ∈ E2, m+1 ≤ j ≤ n. From e′
i ·xk = 0 and xk ·xt = 0 we deduce e′

i ·yk = 0 and
yk ·yt = zk ·zt = 0. Since {e′

1, e
′
2, . . . , e

′
m, xm+1, xm+2, . . . , xn} is a basis of E, then any ele-

ment of E1 belongs to < e′
1, e

′
2, . . . , e

′
m, ym+1, ym+2, . . . , yn >. Choose yj1 , yj2 , . . . , yjk

from the elements ym+1, ym+2, . . . , yn so that {e′
1, e

′
2, . . . , e

′
m, yj1 , yj2 , . . . , yjk

} is a basis
of E1. Thus, E1 is complete.

The next example shows that the converse assertion of Proposition 3.4 is not true in
general.

Example 3.5 Let E be a 4-dimensional evolution algebra which is a direct sum of two-
dimensional evolution algebras E1 and E2, where

E1 : e1 · e1 = e2; E2 : e3 · e3 = e4.

Clearly, E1 and E2 are complete evolution algebras, but E is not complete. Indeed, the
subalgebra L =< e1 + e3, e2 + e4 > is not an evolution subalgebra.

In the following proposition we identify complete evolution algebras among the algebras
of the type En,π (a1, a2, . . . , an).

Proposition 3.6 Let E be an n-dimensional complete evolution algebra of the type
En,π (a1, a2, . . . , an). Then E is isomorphic to one of the following non-isomorphic
algebras:

ES1 ⊕ C
n−1, ENs ⊕ C

n−s , ES1 ⊕ ENs ⊕ C
n−s−1.

Proof Let E be an algebra of the type En,π (a1, a2, . . . , an), then by Theorem 2.7 we have

E ∼= ESp1 ⊕ ESp2 ⊕ · · · ⊕ ESps ⊕ ENk1 ⊕ ENk2 ⊕ · · · ⊕ ENkr .

From Proposition 3.4 we obtain that algebras ESpi
and ENki

are complete.
If there exists pj ≥ 2 with 1 ≤ j ≤ s then, we have

ESpj
:

{
ei · ei = ei+1, 1 ≤ i ≤ pj − 1,

epj
· epj

= e1,

This algebra is not complete, because the one-dimensional subalgebra < x > with x =
e1 + e2 + · · · + epj

is not an evolution subalgebra. Thus, pj = 1 for any j ∈ {1, . . . , s}.
If there exist i and j such that pi = pj = 1, then from Example 3.5 we conclude that E

is not complete. Therefore, we can assume p1 = 1 and pj = 0 for 2 ≤ j ≤ s.
Let us suppose that there exist i and j such that ki ≥ 2, kj ≥ 2. Without loss of gen-

erality we can assume i = 1, j = 2 and k1 ≥ k2. We denote by {e1, e2, . . . , ek1} and
{f1, f2, . . . , fk2} the basis of ENk1 and ENk2 , respectively. Then M =< x1, x2, . . . , xk2 >

with xi = ek1−k2+i + fi, 1 ≤ i ≤ k2 form a subalgebra of E with the following
products

xi · xi = xi+1, 1 ≤ i ≤ k2 − 1, xk2 · xk2 = 0.
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It is not difficult to check that M is not an evolution subalgebra. Thus, we get a contra-
diction with the assumption that there exist i and j such that ki ≥ 2, kj ≥ 2. Therefore, we
can assume kj = 1 for 2 ≤ j ≤ r .

Since EN1 is a one-dimensional algebra with trivial multiplication, then by Proposi-
tion 3.3 it is enough to consider the case s = r = 1, that is, we reduce the study to
ESp ⊕ ENk with p ∈ {0, 1}.
• In the case of p = 1 and k = 1 we obtain the algebra ES1 ⊕ C

n−1;
• In the case of p = 1 and k ≥ 2 we obtain the algebra ES1 ⊕ ENk ⊕ C

n−k−1;
• In the case of p = 0, we obtain the algebra ENk ⊕ C

n−k .

It is not difficult to check that all obtained algebras ES1 ⊕C
n−1, ENs ⊕C

n−s , ES1 ⊕
ENs ⊕ C

n−s−1 are complete.

4 Nilpotent Case

Let E be an n-dimensional non-abelian evolution algebra with a natural basis
{e1, e2, . . . , en}. By transformation of the basic elements we get the following table of
multiplication

e2
i �= 0, 1 ≤ i ≤ k, e2

i = 0, k + 1 ≤ i ≤ n, k ≤ n. (4.1)

We consider the notation given in Theorem 2.9.

Proposition 4.1 Let rank(A) < k. Then E is not complete.

Proof We prove the statement of the proposition by the contrary. Let us assume
that rank(A) = s < k, then there exist indexes i1, i2, . . . , is such that the ele-
ments e2

i1
, e2

i2
, . . . , e2

is
are linearly independent. For the sake of convenience assume that

e2
1, e

2
2, . . . , e

2
s are linearly independent.

Consider the non-trivial linear combination

α1e
2
1 + α2e

2
2 + · · · + αse

2
s + αs+1e

2
s+1 = 0.

Since αs+1 �= 0 (otherwise we obtain trivial linear combination) we get

e2
s+1 = − α1

αs+1
e2

1 − α2

αs+1
e2

2 − · · · − αs

αs+1
e2
s .

Due to existence αi �= 0 for some 1 ≤ i ≤ s, without loss of generality, we can assume
α1 �= 0.

For the element x = √
α1e1 + √

α2e2 + · · · + √
αses + √

αs+1es+1 we have x · x = 0.
Hence, < x > is a one-dimensional subalgebra. Consequently, there exists a natural basis
{x, y2, y3, . . . , yn} of E.

Let us introduce the following denotations

yi =
n∑

j=1

βi,j ej , 2 ≤ i ≤ n.
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Consider

0 = x · yi =
⎛

⎝
s+1∑

j=1

√
αj ej

⎞

⎠ ·
⎛

⎝
n∑

j=1

βi,j ej

⎞

⎠ =
s+1∑

j=1

√
αjβi,j e

2
j

=
s∑

j=1

√
αjβi,j e

2
j − √

αs+1βi,s+1

s∑

j=1

αj

αs+1
e2
j =

s∑

j=1

(√
αjβi,j − √

αs+1βi,s+1
αj

αs+1

)
e2
j .

Thus, √
αjβi,j − √

αs+1βi,s+1
αj

αs+1
= 0, 2 ≤ i ≤ n, 1 ≤ j ≤ s. (4.2)

For j = 1 in the restrictions (4.2) we obtain

βi,s+1 =
√

αs+1

α1
βi,1, 2 ≤ i ≤ n.

We have that {x, y2, y3, . . . , yn} and {e1, e2, . . . , en} are two bases of E. Then the matrix
of change of basis has the following form:

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α1 . . .

√
αs

√
αs+1 0 . . . 0

β2,1 . . . β2,s

√
αs+1
α1

β2,1 β2,s+2 . . . β2,n

β3,1 . . . β3,s

√
αs+1
α1

β3,1 β3,s+2 . . . β3,n

...
...

...
...

...
...

...

βn,1 . . . βn,s

√
αs+1
α1

βn,1 βn,s+2 . . . βn,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since det (B) = 0 we get a contradiction. Thus, the algebra E is not complete.

In the following theorem we describe the nilpotent complete evolution algebras.

Theorem 4.2 An arbitrary nilpotent complete evolution algebra is isomorphic to

Ẽ ⊕ C
n−k,

where Ẽ ∈ ZNk .

Proof Let E be a nilpotent complete evolution algebra with the table of multiplication (4.1).
Then the matrix A has the form:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1,2 a1,3 . . . a1,k+1 . . . a1,n

0 0 a2,3 . . . a2,k+1 . . . a2,n

...
...

...
...

...
...

...

0 0 0 . . . ak,k+1 . . . ak,n

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Putting e′
k+1 =

n∑
j=k+1

ak,j ej we can assume e2
k = ek+1, that is, we can always suppose

ak,k+1 = 1 and ak,j = 0 for k + 2 ≤ j ≤ n.
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Let a1,2a2,3 . . . ak−1,k = 0. Then we denote by t the greatest number such that at,t+1 =
0, i.e., ai,i+1 �= 0 for t + 1 ≤ i ≤ k + 1. If ai,i+1 = 0 for all 1 ≤ i ≤ k − 1, then we put
t = k.

Consider the subalgebra E1 =< et + et+1, et+2, . . . , en >. Then there exists a natural
basis {y1, y2, . . . , yt , et + et+1, et+2, . . . , en} of E.

We set yi =
n∑

j=1
βi,j ej with 1 ≤ i ≤ t . Then

0 = (et + et+1) · yi = βi,t e
2
t + βi,t+1e

2
t+1.

Due to Proposition 4.1 we conclude that rank(A) = k. It implies that e2
t and e2

t+1 are
linearly independent. Therefore, βi,t = βi,t+1 = 0, 1 ≤ i ≤ t . We have two bases in
E : {x, y2, y3, . . . , yn} and {e1, e2, . . . , en}. Then, the matrix of changes of basis has the
following form:

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1,1 . . . β1,t−1 0 0 β1,t+2 . . . β1,n

...
...

...
...

...
...

...
...

βt,1 . . . βt,t−1 0 0 βt,t+2 . . . βt,n

0 . . . 0 1 1 0 . . . 0

0 . . . 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...

0 . . . 0 0 0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, det (B) = 0 and we get a contradiction. Therefore, a1,2a2,3 . . . ak−1,k �= 0.
Taking the following change of basis:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e′
1 = a

−1/2
1,2 a

−1/4
2,3 . . . a

−1/2k−1

k−1,k e1,

e′
2 = a

−1/2
2,3 a

−1/4
3,4 . . . a

−1/2k−2

k−1,k e2,

. . . . . . . . . . . . . . . . . .

e′
k−1 = a

−1/2
k−1,kek−1, k ≤ i ≤ n,

e′
i = ei,

we can assume a1,2 = a2,3 = · · · = ak−1,k = 1.
Moreover, the basis transformation

e′′
j = e′

j +
n∑

i=k+2

aj−1,ie
′
i +

n∑

i=k+2

⎛

⎝
k−1∑

t=j

at,i

⎛

⎝
t−j+1∑

p=1

(−1)p
p∏

h=1

aj−2+h,t+1−p+h

⎞

⎠

⎞

⎠ e′
i ,

2 ≤ j ≤ k,

implies that the algebra E belongs to the family of algebras ZNk+1 ⊕ C
n−k−1. Taking into

account the result of Proposition 3.3 it is enough to prove that any evolution algebra of the
set ZNn is complete.

Indeed, if a subalgebra M of Ẽ (where Ẽ ∈ ZNk) contains an element ej +
k∑

s=j+1
βses ,

then {ej , ej+1, . . . , ek} ⊆ M . Hence, algebra Ẽ has only subalgebras of the form Ei =<
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ei, ei+1, . . . , ek >. It is not difficult to see that the subalgebras Ei are evolution subalgebras
of Ẽ.

5 Conjectures

In this section we formulate two related conjectures. A positive answer to the first conjecture
implies a positive answer for the second one. In fact, the correctness of the second conjecture
completes the description of complete evolution algebras.

Conjecture 5.1 Let A = (ai,j )1≤i,j≤n be a complex invertible matrix. Then the following
system of equations

⎛

⎜⎜⎜⎝

x2
1

x2
2
...

x2
n

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

a1,1 a2,1 . . . an,1
a1,2 a2,2 . . . an,2
...

... . . .
...

a1,n a2,n . . . an,n

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ (5.1)

has a solution (x1, x2, . . . , xn) such that xi �= 0 for all i.

• If n = 1, then this conjecture is obviously true.
• If n = 2, then we consider subcases:

1. Subcase (a1,2, a2,1) = (0, 0). Then a1,1a2,2 �= 0 and we have a solution x1 =
a1,1, x2 = a2,2.

2. Subcase (a1,2, a2,1) �= (0, 0). Then, without loss of generality, we can assume
a1,2 �= 0. Putting x2 = 1

a1,2
(x2

1 − a1,1x1), we get

x1(x
3
1 − 2a1,1x

2
1 + (a2

1,1 − a1,2a2,2)x1 + a1,2(a1,2a2,1 − a2,2a1,1)) = 0. (5.2)

Since a1,2(a1,2a2,1 − a2,2a1,1) �= 0, the Eq. 5.2 has three non-trivial solution.
Moreover,

x3
1 − 2a1,1x

2
1 + (a2

1,1 − a1,2a2,2)x1 + a1,2(a1,2a2,1 − a2,2a1,1) �= (x − a1,1)
3.

From this inequality we deduce that Eq. 5.2 has a solution x1 different from 0 and
a1,1. Hence, x2 = 1

a1,2
(x2

1 − a1,1x1) �= 0.
Thus, Conjecture 5.1 for the case n = 2 is correct, as well.

Now we present two consequences of Conjecture 5.1 about the description of complete
evolution algebras.

Conjecture 5.2 Let E be an n-dimensional (n ≥ 2) evolution algebra with the natural
basis {e1, e2, . . . , en} and invertible matrix A. Then E is not complete.

Indeed, if we consider x · x = x with x =
n∑

i=1
xiei , then comparing the coefficients at

the basic elements ei , we obtain the system of Eq. 5.1. Due to detA �= 0 and according to
Conjecture 5.1 we get the existence of a solution (x1, x2, . . . , xn) such that xi �= 0 for all i.
Therefore, E1 =< x > is a subalgebra of E. However, this subalgebra is not an evolution
subalgebra and the assumption of Conjecture 5.2 is correct.
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Conjecture 5.3 Let E be an n-dimensional non-nilpotent complete evolution algebra. Then
E is isomorphic to one of the following, pairwise non-isomorphic, algebras:

ES1 ⊕ C
n−1, ES1 ⊕ Ẽ ⊕ C

n−s−1,

where Ẽ ∈ ZNs is a nilpotent evolution algebra with maximal index of nilpotency.

Explanation of Conjecture 5.3
Let E be an n-dimensional non-nilpotent complete evolution algebra with the table of

multiplication (4.1).
Note that the table of multiplication (4.1) for k = 1 gives the algebra ES1 ⊕ C

n−1.
Therefore, further we assume k ≥ 2.

Let us introduce the denotations xs,t = (as,1, as,2, . . . , as,t ) for 1 ≤ s ≤ t and 1 ≤ t ≤ k.
Note that there are no s′ and s′′ such that xs′,k = xs′′,k = (0, 0, . . . , 0). In fact, if there

exist s′ and s′′, then the subalgebra E1 =< es′ + es′′ , ek+1, . . . , en > is not an evolution
subalgebra.

It is not difficult to see that the non-zero vectors xs1,k, xs2,k, . . . , xst ,k are linearly
independent. Otherwise there exists a non-trivial linear combination

α1xs1,k + α2xs2,k + · · · + αtxst ,k = 0,

and the subalgebra E1 =<
√

α1es1 + √
α2es2 + · · · + √

αtest , ek+1, ek+2, . . . , en > is not
an evolution subalgebra.

Iteration 1 Let us assume that all vectors xs,k are non-zero (there are k-pieces), then the
determinant of the main minor of order k is non-zero.

Then taking the change e′
i = ei +

n∑
j=k+1

βi,j ej , 1 ≤ i ≤ k, where βi,j are found from

the following equation
⎛

⎜⎜⎜⎝

a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k

...
... . . .

...

ak,1 ak,2 . . . ak,k

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

β1,k+1 β1,k+2 . . . β1,n

β2,k+1 β2,k+2 . . . β2,n

...
...

...
...

βk,k+1 βk,k+2 . . . βk,n

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

a1,k+1 a1,k+2 . . . a1,n

a2,k+1 a2,k+2 . . . a2,n

...
...

...
...

ak,k+1 ak,k+2 . . . ak,n

⎞

⎟⎟⎟⎠ , (5.3)

and we obtain that the evolution algebra E is isomorphic to the algebra E′ ⊕ C
n−k . The

basis {e′
1, e

′
2, . . . , e

′
k} is the natural basis of the evolution algebra E′. Due to Proposition 3.3

the evolution algebra E′ should be complete, but according to Conjecture 5.2 the algebra E′
is not complete. Thus, in this case we get a contradiction.

Let us suppose that there exists some s0 such that xs0,k = (0, 0, . . . , 0). Without loss of
generality, we can assume s0 = k. Then we obtain the multiplication

ei ·ei =
n∑

i=1

ai,j ei , 1 ≤ i ≤ k−1, ek ·ek =
n∑

i=k+1

ai,j ei , ei ·ei = 0, k+1 ≤ i ≤ n.

Applying a change of basis similar to Eq. 5.3 we can assume ai,j = 0 for 1 ≤ i ≤
k − 1, k + 1 ≤ j ≤ n. In addition, choosing e′

k+1 =
n∑

i=k+1
ai,j ei , we derive ek · ek = ek+1.

Iteration 2 Now we consider the vectors xs,k−1 = (as,1, as,2, . . . , as,k−1), for 1 ≤ s ≤
k − 1.



On the Property of Subalgebras of Evolution Algebras

Reduce our study to the case when all vectors xs,k−1 are non-zero. Then the main minor

of order k −1 is non-zero and the equality x ·x = x with x =
k+1∑
i=1

xiei implies the following

system of equations
⎛

⎜⎜⎜⎜⎜⎝

a1,1 a2,1 . . . ak−1,1 0 0
a1,2 a2,2 . . . ak−1,2 0 0
...

... . . .
...

...
...

a1,k a2,k . . . ak−1,k 0 0
0 0 . . . 0 1 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

x2
1

x2
2
...

x2
k

x2
k+1

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

x1
x2
...

xk

xk+1

⎞

⎟⎟⎟⎟⎟⎠
.

From Conjecture 5.1 we have the existence of solution xi �= 0 of the system of equation
⎛

⎜⎜⎜⎝

a1,1 a2,1 . . . ak−1,1
a1,2 a2,2 . . . ak−1,2
...

... . . .
...

a1,k−1 a2,k−1 . . . ak−1,k−1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

x2
1

x2
2
...

x2
k−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

x1
x2
...

xk−1

⎞

⎟⎟⎟⎠

and xk =
k−1∑
s=1

as,kx
2
s , xk+1 = x2

k . Therefore, the element x is not extendable to the natural

basis of the evolution algebra E. We get a contradiction with the assumption that all vectors
xs,k−1 are non-zero.

Continuing the iterations for all vectors xs,k−2, xs,k−3, . . . xs,2, we conclude that there
exists st such that xst ,t = (0, 0, . . . , 0) for all t . By shifting basis elements we can assume
that st = t and we obtain that the evolution algebra E is isomorphic to the following algebra:

e1 · e1 =
k∑

j=1
ai,j ei , ei · ei =

k∑
j=i+1

ai,j ei , 2 ≤ i ≤ k − 1,

ek · ek = ek+1, ei · ei = 0, k + 1 ≤ i ≤ n.

For the element x =
k+1∑
i=1

xiei the equality x · x = x implies the system of equations as

follows ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1,1x
2
1 = x1,

a1,2x
2
1 = x2,

a1,3x
2
1 + a2,3x

2
2 = x3,

. . . . . . . . . . . . . . . . . .

a1,kx
2
1 + a2,kx

2
2 + · · · + ak−1,kx

2
k−1 = xk,

x2
k = xk+1.

Taking into account that the algebra E is non-nilpotent, we have a1,1 �= 0 and x1 = 1
a1,1

.
If (a1,2, a1,3, . . . , a1,k) �= (0, 0, . . . , 0), then there exists a solution (x1, . . . xk+1) such

that xi �= 0 for some 2 ≤ i ≤ k + 1. Similarly as above we conclude that the evolution
algebra E is not complete.

Thus, we get (a1,2, a1,3, . . . , a1,k) = (0, 0, . . . , 0). Hence an n-dimensional non-
nilpotent complete evolution algebra E is isomorphic to one of the following, pairwise
non-isomorphic, algebras:

ES1 ⊕ Cn−1, ES1 ⊕ Ẽ ⊕ Cn−s−1, Ẽ ∈ ZNs.
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1. Camacho, L.M., Gómez, J.R., Omirov, B.A., Turdibaev, R.M.: Some properties of evolution algebras.
Bull. Korean Math. Soc. 50(5), 1481–1494 (2013)
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