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Abstract In this paper we investigate the derivations of filiform Leibniz algebras.
Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into
three non-intersected families. We found sufficient conditions under which filiform
Leibniz algebras of the first family are characteristically nilpotent. Moreover, for
the first family we classify non-characteristically nilpotent algebras by means of
Catalan numbers. In addition, for the rest two families of filiform Leibniz algebras we
describe non-characteristically nilpotent algebras, i.e., those filiform Leibniz algebras
which lie in the complementary set to those characteristically nilpotent.

Keywords Lie algebra ·Leibniz algebra ·Derivation ·Nilpotency ·Characteristically
nilpotent algebra ·Catalan numbers

Mathematics Subject Classifications (2010) 17A32 · 17A36 · 17B30

1 Introduction

In 1955, Jacobson [13] proved that every Lie algebra over a field of characteristic zero
admitting a non-singular derivation is nilpotent. The problem whether the inverse
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of this statement is correct remained open until an example of an 8-dimensional
nilpotent Lie algebra all of whose derivations are nilpotent was constructed in [7].
They called such type of algebras characteristically nilpotent Lie algebras.

If all derivations of an algebra are nilpotent (inner derivations are nilpotent, as
well), then by Engel’s theorem we conclude that a characteristically nilpotent Lie
algebra is nilpotent. The inverse statement is not true, because there exist nilpotent
Lie algebras admitting non-nilpotent derivations. Therefore, the subset of charac-
teristically nilpotent Lie algebras is strictly embedded into the set of nilpotent Lie
algebras.

The papers [6, 14, 17] and others are devoted to the investigation of characteristi-
cally nilpotent Lie algebras. The classification of nilpotent Lie algebras till dimension
8 shows that there are no characteristically nilpotent Lie algebras in dimensions less
than 7. Moreover, it is shown that there exist characteristically nilpotent Lie algebras
in each dimension from 7 till 13-dimensional. Taking into account that a direct sum of
characteristically nilpotent Lie algebras is characteristically nilpotent, then we have
the existence of characteristically nilpotent Lie algebras in each finite dimension
starting from 7.

It was conjectured for a long time that there are “a few” algebras of this kind,
and only in [15], it was proved that every irreducible component of the variety of
complex filiform Lie algebras of dimension greater than 7 contains a Zariski open
set, consisting of characteristically nilpotent Lie algebras. This implies that there are
“many” characteristically nilpotent Lie algebras, and hence they play an important
role in the description of the variety of nilpotent Lie algebras.

The notion of Leibniz algebra has been introduced in [18] as a non-antisymmetric
generalization of Lie algebras. During the last 20 years the theory of Leibniz algebras
has been actively studied and many results of the theory of Lie algebras have
been extended to Leibniz algebras (see, e.g. [1, 3, 9]). In particular, an analogue
of Jacobson’s theorem was proved for Leibniz algebras [16]. Moreover, it is shown
that similarly to the case of Lie algebras for Leibniz algebras the inverse of Jacob-
son’s statement does not hold. In [21], analogously as for Lie algebras, the notion
of characteristically nilpotent Leibniz algebra was defined and some families of
characteristically nilpotent filiform Leibniz algebras were found. Moreover, there
was presented a characterization of of characteristically nilpotency of some filiform
Leibniz algebras. Due to the existence of an example of a characteristically nilpotent
Leibniz algebra which does not satisfy the condition of [21], the characterization is
not correct.

It is known that the class of all filiform Leibniz algebras is split into three non-
intersecting families [3, 9], where one of the families contains filiform Lie algebras
and the other two families come out from naturally graded non-Lie filiform Leibniz
algebras.An isomorphism criterion for these two families of filiform Leibniz algebras
have been given in [9].

In this paper, as opposed to [21], we find out a characterization of characteristically
nilpotency of filiform Leibniz algebras (see Theorems 3.2, 3.8 and 3.10). In addition,
we described, up to isomorphism, the class of filiform Leibniz algebras comple-
mentary to characteristically nilpotent filiform Leibniz algebras. Note that filiform
Leibniz algebras were classified only up to dimension less than 10 in [8, 20, 23, 24].
Here we classify non-characteristically nilpotent non-Lie filiform Leibniz algebras
for any fixed dimension. Recall that non-characteristically nilpotent filiform Lie
algebras are described in [11].
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The classification of non-characteristically nilpotent Leibniz algebras plays an
important role in the structure theory of solvable Leibniz algebras. In the theory
of finite dimensional Leibniz algebras it is known the description of solvable Leibniz
algebras with a given nilradical based on properties of non-nilpotent derivations of
the nilradical. Hence, solvable Leibniz algebras can have only non-characteristically
nilpotent nilradical. Therefore, it is very crucial to indicate non-characteristically
nilpotent Leibniz algebras. The papers [19, 25, 26] are devoted to classifications of
solvable Lie algebras with various types of nilradical. The solvable Leibniz algebras
with null-filiform and naturally graded filiform nil-radical are classified in [4, 5].

Catalan numbers are a well-known sequence of numbers and they are involved in a
lot of branches of mathematics (combinatorics, graph theory, probability theory and
many others). In the present paper we classify some kinds of non-characteristically
nilpotent filiform Leibniz algebras in terms of p-th Catalan numbers.

In order to achieve our goal, we have organized the paper as follows: in Section 2
we present necessary definitions and results that will be used in the rest of the paper.
In Section 3 we describe characteristically nilpotent filiform non-Lie Leibniz algebras
and give the classification of non-characteristically nilpotent filiform non-Lie Leibniz
algebras.

Throughout the paper all the spaces and algebras are assumed finite dimensional.

2 Preliminaries

In this section we give necessary definitions and preliminary results.

Definition 2.1 An algebra (L, [−,−]) over a field F is called a Leibniz algebra if for
any x, y, z ∈ L, the so-called Leibniz identity

[[x, y], z] = [[x, z], y] + [
x, [y, z]]

holds.

For a Leibniz algebra L consider the following central lower series:

L1 = L, Lk+1 = [Lk,L1] k ≥ 1.

Since the notions of right nilpotency and nilpotency coincide [2], we can define
nilpotency as follows:

Definition 2.2 A Leibniz algebra L is called nilpotent if there exists s ∈ N such that
Ls = 0.

Definition 2.3 A Leibniz algebra L is said to be filiform if dim Li = n− i, where n =
dim L and 2 ≤ i ≤ n.

The following theorem decomposes all (n+ 1)-dimensional filiform Leibniz alge-
bras into three families of algebras.
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Theorem 2.4 (Omirov and Rakhimov [22]) Any complex (n+ 1)-dimensional
f iliform Leibniz algebra admits a basis {e0, e1, . . . , en} such that the table of multi-
plication of the algebra has one of the following forms:

F1(α3, α4, . . . , αn, θ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[e0, e0] = e2,

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1,

[e0, e1] =
n−1∑

k=3
αkek + θen,

[ei, e1] =
n∑

k=i+2
αk+1−iek, 1 ≤ i ≤ n− 2,

F2(β3, β4, . . . , βn, γ ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e0, e0] = e2,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1,

[e0, e1] =
n∑

k=3
βkek,

[e1, e1] = γ en,

[ei, e1] =
n∑

k=i+2
βk+1−iek, 2 ≤ i ≤ n− 2,

F3(θ1, θ2, θ3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1,

[e0, ei] = −ei+1, 2 ≤ i ≤ n− 1,

[e0, e0] = θ1en,

[e0, e1] = −e2 + θ2en,

[e1, e1] = θ3en,

[ei, e j] = −[e j, ei] ∈ lin < ei+ j+1, ei+ j+2, . . . , en >, 1 ≤ i < j < n− 1,

[ei, en−i] = −[en−i, ei] = α(−1)ien, 1 ≤ i ≤ n− 1,

where α ∈ {0, 1} for odd n and α = 0 for even n. Moreover, the structure constants of
an algebra from F3(θ1, θ2, θ3) should satisfy the Leibniz identity.

It is easy to see that algebras of the first and the second families are non-Lie
algebras. Note that if (θ1, θ2, θ3) = (0,0, 0), then an algebra of the third class is a Lie
algebra and if (θ1, θ2, θ3) �= (0, 0, 0), then it is a non-Lie Leibniz algebra.

Further we will use the following lemma.

Lemma 2.5 (Gómez and Omirov [9]) For any 0 ≤ p ≤ n− k, 3 ≤ k ≤ n, the follow-
ing equality holds:

n∑

i=k

a(i)
n∑

j=i+p

b (i, j)e j =
n∑

j=k+p

j−p∑

i=k

a(i)b (i, j)e j.

Let us present an isomorphism criterion for the first and second families of non-
Lie filiform Leibniz algebras.
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Theorem 2.6 (Gómez and Omirov [9])
(a) Two algebras from the families F1(α3, α4, . . . , αn, θ) and F

′
1(α

′
3, α

′
4, . . . , α

′
n, θ

′)
are isomorphic if and only if there exist A, B ∈ C such that A(A+ B) �= 0 and the
following conditions hold:

α′
3 = (A+ B)

A2
α3,

α′
t =

1

At−1

⎛

⎝(A+ B)αt −
t−1∑

k=3

⎛

⎝
(
k− 1

k− 2

)
Ak−2Bαt+2−k

+
(
k− 1

k− 3

)
Ak−3B2

t∑

i1=k+2

αt+3−i1αi1+1−k

+
(
k− 1

k− 4

)
Ak−4B3

t∑

i2=k+3

i2∑

i1=k+3

αt+3−i2 · αi2+3−i1 · αi1−k + · · ·

+
(
k− 1

1

)
ABk−2

t∑

ik−3=2k−2

ik−3∑

ik−4=2k−2

· · ·
i2∑

i1=2k−2

αt+3−ik−3

· αik−3+3−ik−4 · · · · · αi2+3−i1αi1+5−2k

+ Bk−1
t∑

ik−2=2k−1

ik−2∑

ik−3=2k−1

· · ·
i2∑

i1=2k−1

αt+3−ik−2

· αik−2+3−ik−3 · · · · · αi2+3−i1 · αi1+4−2k

⎞

⎠ · α′
k

⎞

⎠ ,

θ ′ = 1

An−1

⎛

⎝Aθ + Bαn −
n−1∑

k=3

⎛

⎝
(
k− 1

k− 2

)
Ak−2Bαn+2−k

+
(
k− 1

k− 3

)
Ak−3B2

n∑

i1=k+2

αn+3−i1αi1+1−k

+
(
k− 1

k− 4

)
Ak−4B3

n∑

i2=k+3

i2∑

i1=k+3

αn+3−i2αi2+3−i1αi1−k + · · ·

+
(
k− 1

1

)
ABk−2

n∑

ik−3=2k−2

ik−3∑

ik−4=2k−2

· · ·
i2∑

i1=2k−2

αn+3−ik−3

× αik−3+3−ik−4 . . . αi2+3−i1αi1+5−2k

+ Bk−1
n∑

ik−2=2k−1

ik−2∑

ik−3=2k−1

· · ·
i2∑

i1=2k−1

αn+3−ik−2

· αik−2+3−ik−3 · · · · · αi2+3−i1 · αi1+4−2k

⎞

⎠ · α′
k

⎞

⎠ ,

where 4 ≤ t ≤ n.
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(b) Two algebras from the families F2(β3, β4, . . . , βn, γ ) and F
′
2(β

′
3, β

′
4, . . . , β

′
n, γ

′)
are isomorphic if and only if there exist A, B,D ∈ C such that AD �= 0 and the
following conditions hold:

γ ′ = D2

An
γ,

β ′
3 = D

A2
β3,

β ′
t =

1

At−1

⎛

⎝Dβt−
t−1∑

k=3

⎛

⎝
(
k− 1

k− 2

)
Ak−2Bβt+2−k +

(
k− 1

k− 3

)
Ak−3B2

t∑

i1=k+2

βt+3−i1 · βi1+1−k

+
(
k− 1

k− 4

)
Ak−4B3

t∑

i2=k+3

i2∑

i1=k+3

βt+3−i2 · βi2+3−i1 · βi1−k + · · ·

+
(
k− 1

1

)
ABk−2

t∑

ik−3=2k−2

ik−3∑

ik−4=2k−2

. . .

i2∑

i1=2k−2

βt+3−ik−3βik−3+3−ik−4 . . . βi2+3−i1βi1+5−2k

+ Bk−1
t∑

ik−2=2k−1

ik−2∑

ik−3=2k−1

· · ·
i2∑

i1=2k−1

βt+3−ik−2βik−2+3−ik−3 . . . βi2+3−i1βi1+4−2k

⎞

⎠β ′
k

⎞

⎠ ,

where 4 ≤ t ≤ n− 1,

β ′
n = BDγ

An
+ 1

An−1

(

Dβn −
n−1∑

k=3

((
k− 1

k− 2

)
Ak−2Bβn+2−k

+
(
k− 1

k− 3

)
Ak−3B2

n∑

i1=k+2

βn+3−i1 · βi1+1−k

+
(
k− 1

k− 4

)
Ak−4B3

n∑

i2=k+3

i2∑

i1=k+3

βn+3−i2 · βi2+3−i1 · βi1−k + · · ·

+
(
k− 1

1

)
ABk−2

n∑

ik−3=2k−2

ik−3∑

ik−4=2k−2

· · ·
i2∑

i1=2k−2

βn+3−ik−3βik−3+3−ik−4 . . . βi2+3−i1βi1+5−2k

+ Bk−1
n∑

ik−2=2k−1

ik−2∑

ik−3=2k−1

· · ·
i2∑

i1=2k−1

βn+3−ik−2βik−2+3−ik−3 . . . βi2+3−i1βi1+4−2k

⎞

⎠β ′
k

⎞

⎠ ,

where
(m
n

)
are the binomial coef f icients.

Derivations of Leibniz algebras are defined as usual:

Definition 2.7 A linear transformation d of a Leibniz algebra L is called a derivation
if for any x, y ∈ L

d([x, y]) = [d(x), y] + [x,d(y)].
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A nilpotent Leibniz algebra is called characteristically nilpotent if all its derivations
are nilpotent. As it was mentioned in Section 1, the class of characteristically
nilpotent Leibniz algebras is a subclass of the nilpotent Leibniz algebras.

In [21] the following characterization of characteristically nilpotency is obtained.

Theorem 2.8 (Omirov [21]) A Leibniz algebra of the family F1(α3, α4, . . . , αn, θ) is
characteristically nilpotent if there exist i, j (3 ≤ i �= j ≤ n) such that αiα j �= 0.

Further we shall need the notion of Catalan numbers. The Catalan numbers are
defined as follows:

Cn = 1

n+ 1

(
2n
n

)
= (2n)!

(n+ 1)!n! .

The generalized Catalan numbers or p-th Catalan numbers were defined in [12]
by the formula

Cp
n = 1

(p− 1)n+ 1

(
pn
n

)
.

Obviously, 2-th Catalan numbers are usual Catalan numbers.
H. W. Gould developed a generalization of the n-th Catalan numbers, also called

Rothe numbers or Rothe/Hagen coefficients of the first type (see [10]), as follows:

An(x, z) = x
x+ zn

(
x+ zn

n

)
,

together with their convolution formula

n∑

k=0

Ak(x, z)An−k(y, z) = An(x+ y, z). (2.1)

Note that An(1, p) is the p-th Catalan number Cp
n .

From the convolution formula 2.1, it is not difficult to obtain the following
formula:

n∑

k=1

Cp
kC

p
n−k = 2n

(p− 1)n+ p+ 1
Cp

n+1 . (2.2)

3 The Main Results

Since filiform characteristically nilpotent Lie algebras are already in detail studied in
[14, 15], we shall consider only non-Lie Leibniz algebras.

In this section we describe characteristically nilpotent filiform non-Lie Leibniz
algebras and give the classification of non-characteristically nilpotent filiform non-
Lie Leibniz algebras.

3.1 CharacteristicallyNilpotentFiliformLeibnizAlgebrasof the Family F1(α3,α4,. . . ,αn,θ)

Let L be a filiform Leibniz algebra from the family F1(α3, α4, . . . , αn, θ). The
following proposition describes the derivations of such algebras.
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Proposition 3.1 The derivations of the f iliform Leibniz algebras from the family
F1(α3, α4, . . . , αn, θ) have the following form:

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

a0 a1 a2 a3 . . . an−2 an−1 an
0 a0 + a1 a2 a3 . . . an−2 bn−1 bn

0 0 2a0 + a1 a2 + a1α3 . . . an−3 + a1αn−2 an−2 + a1αn−1 an−1 + a1αn

0 0 0 3a0 + a1 . . . an−4 + 2a1αn−2 an−3 + 2a1αn−1 an−2 + 2a1αn−1
...

...
...

...
...

...
...

...

0 0 0 0 . . . (n− 2)a0 + a1 a2 + (n− 3)a1α3 a3 + (n− 3)a1α4

0 0 0 0 . . . 0 (n− 1)a0 + a1 a2 + (n− 2)a1α3

0 0 0 0 . . . 0 0 na0 + a1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

where

a0(θ − αn) = 0, a1(αn − θ) = an−1 − bn−1, α3(a1 − a0) = 0,

αk(a1 − (k− 2)a0) = k
2
a1

k∑

j=4

α j−1αk− j+3, 4 ≤ k ≤ n. (3.1)

Proof Let L be a filiform Leibniz algebra from the family F1(α3, α4, . . . , αn, θ) and
let d : L → L be a derivation of L.

Put

d(e0) =
n∑

k=0

akek, d(e1) =
n∑

k=0

bkek.

By the property of the derivation, we have

d(e2) = d([e0, e0]) = [d(e0), e0] + [e0, d(e0)] =
[

n∑

k=0

akek, e0

]

+
[

e0,

n∑

k=0

akek

]

= (a0 + a1)e2 +
n∑

k=3

ak−1ek + a0e2 + a1

(
n−1∑

k=3

αkek + θen

)

= (2a0 + a1)e2 +
n−1∑

k=3

(ak−1 + a1αk)ek + (an−1 + a1θ)en.

By induction we derive

d(ei) = (ia0 + a1)ei +
n∑

k=i+1

(ak−i+1 + (i− 1)a1αk−i+2)ek, 3 ≤ i ≤ n.
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Indeed, if the induction hypothesis is true for i, then for i + 1 it implies, from the
following chain of equalities:

d(ei+1) = d([ei, e0]) = [d(ei), e0] + [ei,d(e0)]

=
[

(ia0 + a1)ei +
n∑

k=i+1

(ak−i+1 + (i− 1)a1αk−i+2)ek, e0

]

+
[

ei,
n∑

k=0

akek

]

= (ia0 + a1)ei+1 +
n∑

k=i+2

(ak−i + (i− 1)a1αk−i+1)ek + a0ei+1 + a1

n∑

k=i+2

αk−i+1ek

= ((i+ 1)a0 + a1) ei+1 +
n∑

k=i+2

(ak−i + ia1αk−i+1)ek.

Consider the property of derivation:

d([e1, e0]) = [d(e1), e0] + [e1,d(e0)] =
[

n∑

k=0

bkek, e0

]

+
[

e1,

n∑

k=0

akek

]

= (b 0 + b 1)e2 +
n∑

k=3

bk−1ek + a0e2 + a1

n∑

k=3

αkek

= (a0 + b 0 + b 1)e2 +
n∑

k=3

(bk−1 + a1αk)ek.

On the other hand

d([e1, e0]) = d(e2) = (2a0 + a1)e2 +
n−1∑

k=3

(ak−1 + a1αk)ek + (an−1 + a1θ)en.

Comparing the coefficients at the basic elements we have

b 0 + b 1 = a0 + a1, b i = ai, 2 ≤ i ≤ n− 2, a1(αn − θ) = an−1 − bn−1.

Using Lemma 2.5 we obtain

d([e0, e1]) = [d(e0), e1] + [e0,d(e1)] =
[

n∑

k=0

akek, e1

]

+
[

e0,

n∑

k=0

bkek

]

= a0

(
n−1∑

k=3

αkek + θen

)

+
n−2∑

k=1

ak
n∑

j=k+2

α j−k+1e j + b 0e2 + b 1

(
n−1∑

k=3

αkek + θen

)



954 A.K. Khudoyberdiyev et al.

= b 0e2 + (a0 + b 1)α3e3 +
n−1∑

k=4

(a0 + b 1)αkek + (a0 + b 1)θen + a1α3e3

+ a1

n∑

j=4

α je j +
n∑

k=4

ak−2

n∑

j=k

α j−k+3e j

= b 0e2+ (a0+a1+b 1)α3e3+
n−1∑

k=4

(a0+a1+b 1)αkek+ ((a0+b 1)θ+a1αn) en

+
n∑

k=4

⎛

⎝
k∑

j=4

a j−2αk− j+3

⎞

⎠ ek

= b 0e2 + (a0 + a1 + b 1)α3e3 +
n−1∑

k=4

⎛

⎝(a0 + a1 + b 1)αk +
k∑

j=4

a j−2αk− j+3

⎞

⎠ek

+
⎛

⎝(a0 + b 1)θ + a1αn +
n∑

j=4

a j−2αn− j+3

⎞

⎠ en.

On the other hand

d([e0, e1]) = d

(
n−1∑

k=3

αkek + θen

)

=
n−1∑

k=3

αkd(ek)+ θd(en)

=
n−1∑

k=3

αk

⎛

⎝(ka0 + a1)ek +
n∑

j=k+1

(a j−k+1 + (k− 1)a1α j−k+2)e j

⎞

⎠

+ (na0 + a1)θen

= (3a0 + a1)α3e3 +
n−1∑

k=4

αk(ka0 + a1)ek + (na0 + a1)θen

+
n∑

k=4

⎛

⎝αk−1

n∑

j=k

(a j−k+2 + (k− 2)a1α j−k+3)e j

⎞

⎠

= (3a0 + a1)α3e3 +
n−1∑

k=4

⎛

⎝(ka0+a1)αk+
k∑

j=4

a j−2αk− j+3+ k
2
a1

k∑

j=4

α j−1αk− j+3

⎞

⎠ek

+
⎛

⎝(na0 + a1)θ +
n∑

j=4

a j−2αn− j+3 + n
2
a1

n∑

j=4

α j−1αn− j+3

⎞

⎠ en.

Comparing the coefficients at the basic elements we conclude

b 0 = 0 ⇒ b 1 = a0 + a1, (a0 + a1 + b 1)α3 = (3a0 + a1)α3,
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(a0 + a1 + b 1)αk +
k∑

j=4

a j−2αk− j+3 = (ka0 + a1)αk +
k∑

j=4

a j−2αk− j+3

+ k
2
a1

k∑

j=4

α j−1αk− j+3, 4≤k≤n−1,

(a0 + b 1)θ + a1αn +
n∑

j=4

a j−2αn− j+3 = (na0+a1)θ

+
n∑

j=4

a j−2αn− j+3 + n
2
a1

n∑

j=4

α j−1αn− j+3.

Replacing b 1 = a0 + a1 we get

(a1 − a0)α3 = 0,

(a1 − (k− 2)a0)αk = k
2
a1

k∑

j=4

α j−1αk− j+3, 4 ≤ k ≤ n− 1,

(2 − n)a0θ + a1αn = n
2
a1

n∑

j=4

α j−1αn− j+3. (3.2)

Similarly to the above argumentations we derive

d([e1, e1]) = [d(e1), e1] + [e1,d(e1)] = 2(a0 + a1)α3e3

+
n∑

k=4

⎛

⎝(2a0 + 2a1)αk +
k∑

j=4

a j−2αk− j+3

⎞

⎠ ek.

On the other hand

d([e1, e1]) = d

(
n∑

k=3

αkek

)

=
n∑

k=3

αkd(ek)

= (3a0 + a1)α3e3

+
n∑

k=4

⎛

⎝(ka0 + a1)αk +
k∑

j=4

a j−2αk− j+3 + k
2
a1

k∑

j=4

α j−1αk− j+3

⎞

⎠ ek.

Comparing the coefficients at the basic elements we obtain

(a1 − a0)α3 = 0

and the restriction 3.1, i.e. (a1 − (k− 2)a0)αk = k
2a1

k∑

j=4
α j−1αk− j+3, 4 ≤ k ≤ n.

From Eq. 3.1 for k = n and the restriction 3.2, we have a0(θ − αn) = 0.
Considering the properties of the derivation for d([ei, e2]), 3 ≤ i ≤ n− 2, we have

the same restrictions. 	
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From Proposition 3.1 it is obvious that if there exist the pair a0, a1 such that
(a0, a1) �= (0, 0) and the restriction 3.1 holds, then a filiform Leibniz algebra of
the first family is non-characteristically nilpotent, otherwise is characteristically
nilpotent.

From [5] and [21] it is known that the naturally graded filiform Leibniz algebra
(the algebra with αi = 0, 3 ≤ i ≤ n, θ = 0) is non-characteristically nilpotent.

Theorem 3.2 Let θ �= αn and suppose that there exist αk �= 0, 3 ≤ k ≤ n. Then
a f iliform Leibniz algebra of the family F1(α3, α4, . . . , αn, θ) is characteristically
nilpotent.

Proof Note that it is sufficient to prove a0 = a1 = 0.
Let θ �= αn, then the restriction 3.1 implies that a0 = 0 and we get

α3a1 = 0, a1αk = k
2
a1

k∑

j=4

α j−1αk− j+3, 4 ≤ k ≤ n.

If there exist αk �= 0, then for the first non-zero αk �= 0, we have αka1 = 0. Hence
a1 = 0. 	


From the above theorem we have that an algebra of the class
F1(0,0, . . . , 0, θ), θ �= 0, is non-characteristically nilpotent.

Remark 3.3 Note that in the notations of Theorem 2.6 putting A = n−2√
θ , we

conclude that an algebra F1(0, 0, . . . , 0, θ), θ �= 0, is isomorphic to the algebra
F1(0,0, . . . , 0, 1).

Below, we present an examplewhich shows that Theorem 2.8 is not true in general.

Example 3.4 Let L be a 6-dimensional filiform Leibniz algebra and let
{e0, e1, e2, e3, e4, e5} be a basis of L with the following multiplication:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e0, e0] = e2,

[ei, e0] = ei+1, 1 ≤ i ≤ 4,

[e0, e1] = e3 − 2e4 + 5e5,

[e1, e1] = e3 − 2e4 + 5e5,

[e2, e1] = e4 − 2e5,

[e3, e1] = e5,

(omitted products are equal to zero).



The Classification of Non-Characteristically Nilpotent Filiform Leibniz Algebras 957

Clearly, this algebra satisfies the condition of Theorem 2.8, but it is non-
characteristically nilpotent, because the derivations of the algebra have the form:

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

a1 a1 a3 a4 a5 a6

0 2a1 a3 a4 a5 b 6

0 0 3a1 a1 + a3 −2a1 + a4 5a1 + a5

0 0 0 4a1 2a1 + a3 −4a1 + a4

0 0 0 0 5a1 3a1 + a3

0 0 0 0 0 6a1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.

Let us now consider the case αn = θ .

Lemma 3.5 Let L be a non-characteristically nilpotent f iliform Leibniz algebra from
the family F1(α3, α4, . . . , αn, αn) and let αs �= 0 be the f irst non-zero parameter from
{α3, α4, . . . , αn}. Then

αk =
{

0, if k �≡ s (mod(s− 2));

(−1)tCs−1
t+1α

t+1
s , if k ≡ s (mod(s− 2)),

where 3 ≤ k ≤ n, t = k−s
s−2 and Cp

n = 1
(p−1)n+1

(
pn
n

)
is the p-th Catalan number.

Proof Since αs �= 0, from the equality 3.1, we obtain (a1 − (s− 2)a0)αs = 0, and
consequently, a1 = (s− 2)a0. Replacing a1 = (s− 2)a0 we have

(s− k)a0αk = k
2
(s− 2)a0

k∑

j=4

α j−1αk− j+3, k ≥ s+ 1.

Since the algebra is non-characteristically nilpotent, we have a0 �= 0 and

αk = k(s− 2)

2(s− k)

k∑

j=4

α j−1αk− j+3. (3.3)

We will prove the statement of the lemma by induction on l =  k−s
s−2�, where x� is

the integer part of x.
The base of induction l = 0 is straightforward from the condition of the lemma.
Let us suppose the induction hypothesis is true for t < l and we will prove it for

l =  k−s
s−2�.

From equality 3.3 we have that if k �≡ s (mod(s− 2)), then one of the values of j−
1 and k− j+ 3 are not congruent by mod (s− 2) with s, simultaneously. Otherwise,
if j− 1 ≡ s (mod(s− 2)) and k− j+ 3 ≡ s (mod(s− 2)), then k ≡ s (mod(s− 2)),
which is a contradiction. Thus, by induction hypothesis, we have α j−1αk− j+3 = 0 for
any j (4 ≤ j ≤ k), which implies αk = 0 for any k �≡ s (mod(s− 2)) with  k−s

s−2� = l.
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If k ≡ s (mod(s− 2)), i.e. k = s+ (s− 2)t then

αk = (s+ (s− 2)t)(s− 2)

2(s− s− (s− 2)t)

s+(s−2)t∑

j=4

α j−1αs+(s−2)t− j+3

= − s+ (s− 2)t
2t

s+(s−2)t∑

j=4

α j−1αs+(s−2)t− j+3 = − s+ (s− 2)t
2t

(s−2)t+3∑

j=s+1

α j−1αs+(s−2)t− j+3.

Changing j− 1 = s+ (s− 2) j′ and using the induction hypothesis, we obtain

αk = − s+ (s− 2)t
2t

t−1∑

j′=0

αs+(s−2) j′αs+(s−2)(t− j′−1)

= − s+ (s− 2)t
2t

(−1)t−1αt+1
s

t−1∑

j′=0

Cs−1
j′+1C

s−1
t− j′

= (−1)tαt+1
s

⎛

⎝ s+ (s− 2)t
2t

t∑

j=1

Cs−1
j Cs−1

t+1− j

⎞

⎠ .

Applying formula 2.2, we derive

αk = (−1)tαt+1
s Cs−1

t+1 ,

where 3 ≤ k ≤ n, t = k−s
s−2 and Cp

n is the p-th Catalan number. 	


Below, we present the classification of algebras obtained in Lemma 3.5.

Theorem 3.6 Let L be a non-characteristically nilpotent f iliform Leibniz algebra of
the family F1(α3, α4, . . . , αn, αn). Then it is isomorphic to one of the following pairwise
non-isomorphic algebras:

Fs
1(α3, α4, . . . , αn, αn), 3 ≤ s ≤ n,

where

αk =
⎧
⎨

⎩

0, if k �≡ s (mod(s− 2));

(−1)tCs−1
t+1 , if k ≡ s (mod(s− 2)) for t = k− s

s− 2
,

3 ≤ k ≤ n and Cp
n is the p-th Catalan number.

Proof From Lemma 3.5 we have

αk =
{

0, if k �≡ s (mod(s− 2));
(−1)tCs−1

t+1α
t+1
s , if k ≡ s (mod(s− 2)).

From Theorem 2.6, we have the isomorphism criterion

α′
s =

1

As−1
(A+ B)αs.
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Putting B = As−1

αs
− A, we get α′

s = 1. Thus, without loss of generality we can
assume αs = 1, then

αk =
{

0, if k �≡ s (mod(s− 2));
(−1)tCs−1

t+1 , if k ≡ s (mod(s− 2)).

	


3.2 Non-Characteristically Nilpotent Filiform Leibniz Algebras of the Family
F2(β3, β4, . . . , βn, γ )

Now we consider algebras of the family F2(β3, β4, . . . , βn, γ ). Similar to the above
section, firstly we describe the derivations of such algebras.

Proposition 3.7 Any derivation of a f iliform Leibniz algebra of the family
F2(β3, β4, . . . , βn, γ ) has the form:

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

a0 a1 a2 a3 . . . an−2 an−1 an
0 b 1 0 0 . . . 0 −a1γ bn

0 0 2a0 a2 + a1β3 . . . an−3 + a1βn−2 an−2 + a1βn−1 an−1 + a1βn

0 0 0 3a0 . . . an−4 + 2a1βn−3 an−3 + 2a1βn−2 an−2 + 2a1βn−1
...

...
...

...
...

...
...

...

0 0 0 0 . . . (n− 2)a0 a2 + (n− 3)a1β3 a3 + (n− 3)a1β4

0 0 0 0 . . . 0 (n− 1)a0 a2 + (n− 2)a1β3

0 0 0 0 . . . 0 0 na0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

where

γ (2b 1 − na0) = 0, β3(b 1 − 2a0) = 0,

βk(b 1 − (k− 1)a0) = k
2
a1

k∑

j=4

β j−1βk− j+3, 4 ≤ k ≤ n− 1, (3.4)

βn(b 1 − (n− 1)a0) = −a1γ + n
2
a1

n∑

j=4

β j−1βn− j+3.

Proof Let L be a filiform Leibniz algebra from the second family and let d : L → L
be a derivation of L.

We set

d(e0) =
n∑

k=0

akek, d(e1) =
n∑

k=0

bkek.
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From the property of the derivation d one has

d(e2) = d([e0, e0]) = [d(e0), e0] + [e0, d(e0)] =
[

n∑

k=0

akek, e0

]

+
[

e0,

n∑

k=0

akek

]

= a0e2 +
n∑

k=3

ak−1ek + a0e2 + a1

n∑

k=3

βkek = 2a0e2 +
n∑

k=3

(ak−1 + a1βk)ek.

By induction it is not difficult to obtain

d(ei) = ia0ei +
n∑

k=i+1

(ak+1−i + (i− 1)a1βk+2−i) ek, 2 ≤ i ≤ n.

Consider the property of the derivation

d([e1, e0]) = [d(e1), e0] + [e1,d(e0)] =
[

n∑

k=0

bkek, e0

]

+
[

e1,

n∑

k=0

akek

]

= b 0e2 +
n∑

k=3

bk−1ek + a1γ en.

On the other hand

d([e1, e0]) = 0.

Consequently, b 0 = b 2 = b 3 = · · · = bn−2 = 0, bn−1 = −a1γ .
From the chain of equalities

na0γ en = d(γ en) = d([e1, e1]) = [d(e1), e1] + [e1, d(e1)]
= [b 1e1 + bn−1en−1 + bnen, e1] + [e1,b 1e1 + bn−1en−1 + bnen] = 2b 1γ en,

we get (2b 1 − na0)γ = 0.
Using Lemma 2.5 and the derivation property, we obtain

d([e0, e1]) = [d(e0), e1] + [e0,d(e1)]

= (a0 + b 1)β3e3 +
n∑

k=4

(a0 + b 1)βkek + a1γ en +
n∑

k=4

⎛

⎝
k∑

j=4

a j−2βk− j+3

⎞

⎠ ek.

On the other hand

d([e0, e1]) = d

(
n∑

k=3

βkek

)

=
n∑

k=3

βkd(ek)

= 3a0β3e3 +
n∑

k=4

ka0βkek +
n∑

k=4

⎛

⎝
k∑

j=4

a j−2βk− j+3

⎞

⎠ ek

+ a1

n∑

k=4

k
2

⎛

⎝
k∑

j=4

β j−1βk− j+3

⎞

⎠ ek.
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Comparing the coefficients at the basic elements we deduce

β3(b 1 − 2a0) = 0,

βk(b 1 − (k− 1)a0) = k
2
a1

k∑

j=4

β j−1βk− j+3, 4 ≤ k ≤ n− 1,

βn(b 1 − (n− 1)a0) = −a1γ + n
2
a1

n∑

j=4

β j−1βn− j+3.

Considering the properties of the derivation for products d([ei, e1]), 2 ≤ i ≤ n− 2,
we already get the obtained restrictions. 	


From Proposition 3.7 it is obvious that if there exists the pair a0,b 1 such that
(a0,b 1) �= (0, 0) and the restriction 3.4 holds, then a filiform Leibniz algebra is non-
characteristically nilpotent, otherwise is characteristically nilpotent.

It is known that a naturally graded filiform Leibniz algebra of the second family
(an algebra with γ = 0 and βi = 0, 3 ≤ i ≤ n) is non-characteristically nilpotent
[5, 21].

Theorem 3.8 Let γ �= 0 and n be odd. If there there exist βi �= 0, 3 ≤ i ≤ n− 1, then a
f iliform Leibniz algebra from F2(β3, β4, . . . , βn, γ ) is characteristically nilpotent.

Proof If γ �= 0, then since γ (2b 1 − na0) = 0, this implies that b 1 = na0
2 and we get

that the restrictions 3.4 have the form

(n− 4)a0

2
β3 = 0,

n− 2k+ 2

2
βka0 = k

2
a1

k∑

j=4

β j−1βk− j+3, 4 ≤ k ≤ n− 1,

−n+ 2

2
βna0 = −a1γ + n

2
a1

n∑

j=4

β j−1βn− j+3.

If there exist βk �= 0, 3 ≤ k ≤ n− 1, then for the first non-zero βk �= 0, we get

(n− 2k+ 2)a0βk = 0.

Since n is odd, we conclude a0 = b 1 = 0. 	


Let us clarify the situation when βi = 0 for 3 ≤ i ≤ n− 1.

Theorem 3.9 Let γ �= 0 and n be odd. Then any non-characteristically nilpotent
f iliform Leibniz algebra of the second class is isomorphic to the algebra

F2(0, 0, . . . , 0, 0, 1).
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Proof Theorem 3.8 implies that if n is odd, then a non-characteristically nilpotent
filiform Leibniz algebra of the second family has the form F2(0, 0, . . . , 0, βn, γ ),
where

−n+ 2

2
βna0 = −a1γ.

Since γ �= 0, then for any βn putting a0 �= 0 and a1 = (n−2)βna0

2γ , we have a non-
singular derivation.

From Theorem 2.6, we derive β ′
k = 0, 3 ≤ k ≤ n− 1, and the isomorphism crite-

rion is

γ ′ = D2

An
γ, β ′

n =
BDγ

An
+ D

An−1
βn.

Since γ �= 0, putting D =
√

An

γ
, we get

γ ′ = 1, β ′
n = Bγ + Aβn√

γ An
.

Setting B = −Aβn

γ
, we have β ′

n = 0 and so we obtain the algebra F2(0, 0, . . . , 0, 1).

	


Now we investigate the even n case.

Theorem 3.10 Let γ �= 0 and n be even. If there exist βk �= 0, 3 ≤ k ≤ n− 1, k �= n+2
2 ,

then an algebra of the family F2(β3, β4, . . . , βn, γ ) is characteristically nilpotent.

Proof Analogously to the proof of Theorem 3.8 	


Theorem 3.11 Let L be a non-characteristically nilpotent f iliform Leibniz algebra
from the family F2(β3, β4, . . . , βn, γ ). If γ �= 0 and n is even, then it is isomorphic
to one of the following pairwise non-isomorphic algebras:

F2(0, . . . , 0, β n+2
2
, 0, . . . , 0, 0, 1).

Proof Let L be a non-characteristically nilpotent filiform Leibniz algebra, then by
Theorem 3.10 we have βk = 0, 3 ≤ k ≤ n− 1, k �= n+2

2 and

−n+ 2

2
βna0 = −a1γ + n

2
a1β

2
n+2

2
. (3.5)

Since γ �= 0, then for any values of β n+2
2

and βn there exist a0, a1 (a0 �= 0) such
that the restriction 3.5 is held. Therefore, a non-characteristically nilpotent filiform
Leibniz algebra of the second family has the form

F2(0, . . . , 0, β n+2
2
, 0, . . . , 0, βn, γ ).



The Classification of Non-Characteristically Nilpotent Filiform Leibniz Algebras 963

By Theorem 2.6 we have the isomorphism criterion

β ′
k = 0, 3 ≤ k ≤ n− 1, k �= n+ 2

2
,

γ ′ = D2

An
γ, β ′

n+2
2

= D

A
n
2
β n+2

2
, β ′

n =
BDγ

An
+ D

An−1

(
βn − nB

2A
β2

n+2
2

)
.

Putting D = A
n
2√
γ
, we get

γ ′ = 1, β ′
n+2

2
= β n+2

2√
γ
, β ′

n = 1
√
Anγ

(
(γ − n

2
β2

n+2
2
)B+ Aβn

)
.

It is not difficult to check that γ ′ − n
2β

′2
n+2

2
= D2

An (γ − n
2β

2
n+2

2
).

If γ �= n
2β

2
n+2

2
, then putting B = − 2Aβn

2γ−nβ2
n+2

2

, we have β ′
n = 0, and so obtain the

algebra

F2(0, . . . , 0, β n+2
2
, 0, . . . , 0, 0, 1), β n+2

2
�=

√
2

n
.

If γ = n
2β

2
n+2

2
, then we have −n+2

2 βna0 = 0, β ′
n+2

2
=

√
2
n , β ′

n = βn√
An−2γ

.

Since a0 �= 0, we have βn = 0, β ′
n = 0 and obtain the algebra F2(0, . . . , 0,√

2
n , 0, . . . , 0, 0, 1). 	


Let us investigate the case γ = 0.

Theorem 3.12 Let L be a non-characteristically nilpotent f iliform Leibniz algebra
from F2(β3, β4, . . . , βn, γ ). If γ = 0, then it is isomorphic to one of the following
pairwise non-isomorphic algebras:

F j
2(0, . . . , 0,

j
1, 0 . . . , 0, 0), 3 ≤ j ≤ n.

Proof The restrictions 3.4 under the conditions of the theorem have the form

β3(b 1 − 2a0) = 0,

βk(b 1 − (k− 1)a0) = k
2
a1

k∑

j=4

β j−1βk− j+3, 4 ≤ k ≤ n.

Let β j be the first non-zero parameter, i.e. βi = 0 for 3 ≤ i ≤ j− 1 and β j �= 0.
Then we have β j(b 1 − ( j− 1)a0) = 0, which implies b 1 = ( j− 1)a0. Since the algebra
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is non-characteristically nilpotent, the coefficient a0 �= 0. Therefore, from the restric-
tions 3.4, we derive

βk = 0, j+ 1 ≤ k ≤ 2 j− 3,

(2 − j)a0β2 j−2 = ( j− 1)a1β
2
j , (3.6)

βk = 0, k �= t( j− 2)+ 2,

(t − 1)(2 − j)a0βt( j−2)+2 = t( j− 2)+ 2

2
a1

t−1∑

i=1

βi( j−2)+2β(t−i)( j−2)+2 ,

where t ≥ 3,k ≤ n.
From Theorem 2.6 we get the isomorphism criterion

β ′
k = 0, 3 ≤ k ≤ j− 1, β ′

j =
D

Aj−1
β j,

β ′
k = 0, j+ 1 ≤ k ≤ 2 j− 3, β ′

2 j−2 = D
A2 j−3

(
β2 j−2 − ( j− 1)B

A
β2
j

)
.

Putting D = Aj−1

β j
, B = Aβ2 j−2

( j−1)β2
j
, we obtain β ′

j = 1, β ′
2 j−2 = 0. Thus, if βi = 0 for

3 ≤ i ≤ j− 1 and β j �= 0, then, without loss of generality, we can suppose β j = 1 and
β2 j−2 = 0.

The restrictions 3.6 imply a1 = 0 and (t − 1)(2 − j)a0βt( j−2)+2 = 0, t ≥ 3, which

leads to βk = 0 for all k �= j. Thus, we obtain the algebras F j
2(0, . . . , 0,

j
1, 0, . . . ,

0, 0), 3 ≤ j ≤ n. 	


3.3 Non-Characteristically Nilpotent Filiform Leibniz Algebras
of the Family F3(θ1, θ2, θ3)

Since non-characteristically nilpotent filiform Lie algebras are described in [11],
we will classify them only in the non-Lie case.

Let L be a filiform non-Lie Leibniz algebra of the third family. Put

[ei, e1] = −[e1, ei] = βi,i+2ei+2 + βi,i+3ei+3 + · · · + βi,nen, 2 ≤ i ≤ n− 2.

Using the Leibniz identity it is not difficult to obtain the following equality:

[ei, ek] =
n∑

j=i+k+1

( k−1∑

t=0

(−1)t
(
k− 1

t

)
βi+t, j+1−k+t

)
e j, 2 ≤ k, k ≤ i ≤ n− k− 1.

Since [ek, ek] = 0, we have
k−1∑

t=0
(−1)t

(
k− 1

t

)
βk+t,k+t+2 = 0, 2 ≤ k ≤ n.

Proposition 3.13 Let L be a non-characteristically nilpotent non-Lie f iliform Leibniz
algebra from the family F3(θ1, θ2, θ3). Then

βi, j = 0, 2 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n,

i.e. [ei, e j] = 0, for 1 ≤ i < j < n− 1.
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Proof Let L be a non-characteristically nilpotent non-Lie filiform Leibniz algebra
from the family F3(θ1, θ2, θ3) and let d be a derivation of L.

Put

d(e0) =
n∑

k=0

akek, d(e1) =
n∑

k=0

bkek.

Similarly as above we establish b 0 = 0.
From the property of the derivation we have

d(ei) = ((i − 1)a0 + b 1) ei (mod Li+1), 2 ≤ i ≤ n.

Consider the equalities

d([e0, e0]) = [d(e0), e0] + [e0, d(e0)] =
[

n∑

k=0

akek, e0

]

+
[

e0,

n∑

k=0

akek

]

= a0[e0, e0] + a1[e1, e0] + a0[e0, e0] + a1[e0, e1] = (2a0θ1 + a1θ2)en.

On the other hand,

d([e0, e0]) = θ1d(en) = θ1 ((n− 1)a0 + b 1) en.

Consequently,

θ1 ((n− 3)a0 + b 1) = a1θ2.

Consider the property of the derivation for the product [e0, e1],
d([e0, e1]) = [d(e0), e1] + [e0,d(e1)] = a0[e0, e1] + a1[e1, e1]

+
[

n∑

k=2

akek, e1

]

+ b 1[e0, e1] +
[

e0,

n∑

k=2

bkek

]

= −a0[e1, e0] − a1[e1, e1] −
[

e1,

n∑

k=2

akek

]

+ a0θ2en

+ 2a1θ3en − b 1[e1, e0] −
[

n∑

k=2

bkek, e0

]

+ b 1θ2en

= −
[

e1,

n∑

k=0

akek

]

−
[

n∑

k=1

bkek, e0

]

+ (a0θ2 + b 1θ2

+ 2a1θ3)en = −d(e2)+ (a0θ2 + b 1θ2 + 2a1θ3)en.

On the other hand,

d([e0, e1]) = d(−e2 + θ2en) = −d(e2)+ θ2d(en) = −d(e2)+ θ2 ((n− 1)a0 + b 1) en.

Therefore, 2a1θ3 = (n− 2)a0θ2.
Similarly, from

d([e1, e1]) =
[

n∑

k=1

bkek, e1

]

+
[

e1,

n∑

k=1

bkek

]

= [b 1e1, e1] + [e1,b 1e1] = 2b 1θ3en
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and

d([e1, e1]) = d(θ3en) = θ3 ((n− 1)a0 + b 1) en

we conclude that θ3 ((n− 1)a0 − b 1) = 0.
Thus, we obtain

θ1 ((n− 3)a0 + b 1) = a1θ2, 2a1θ3 = (n− 2)a0θ2, θ3 ((n− 1)a0 − b 1) = 0.

Note that for a non-Lie Leibniz algebra we have (θ1, θ2, θ3) �= (0, 0, 0).
If θ3 �= 0, then b 1 = (n− 1)a0, a1 = (n−2)a0θ2

2θ3
and (2n− 4)a0θ1 = (n−2)a0θ

2
2

2θ3
.

Note that a0 �= 0 (since L is non-characteristically nilpotent). Therefore, we
deduce

θ1 = θ2
2

4θ3
.

If θ3 = 0, then θ1 ((n− 3)a0 + b 1) = a1θ2, (n− 2)a0θ2 = 0.
If θ2 �= 0, then a0 = 0, and θ1b 1 = a1θ2.
If θ2 = 0, then θ1 �= 0, and b 1 = −(n− 3)a0.
Thus, on the behavior of the parameters θ1, θ2 and θ3 we obtain the following

equalities:

b 1 = (n− 1)a0, a0 = 0, b 1 = −(n− 3)a0.

Now we shall prove βi, j = 0, 4 ≤ j ≤ n, 2 ≤ i ≤ j− 2, by induction on j for any
values of i.

Consider the property of the derivation for the product [e2, e1],

d([e2, e1]) = [d(e2), e1] + [e2,d(e1)] = [(a0 + b 1)e2 + x3, e1] +
[

e2,

n∑

k=1

bkek

]

= (a0 + 2b 1)β2,4e4 + x5.

On the other hand,

d([e2, e1]) = β2,4d(e4)+ β2,5d(e5)+ · · · + β2,nd(en) = (3a0 + b 1)β2,4e4 + y5,

where x3 ∈ L3 and x5, y5 ∈ L5.
Comparing the coefficients at the basic element e4, we obtain

β2,4(b 1 − 2a0) = 0.

Since b 1 = (n− 1)a0 or a0 = 0 or b 1 = −(n− 3)a0 and (a0, b 1) �= (0,0), we have
β2,4 = 0. Thus, we proved the statement of the proposition for j = 4.

Let the induction hypothesis be true for j ≤ k ≤ n− 1, i.e. βi, j = 0 for 4 ≤ j ≤
k, 2 ≤ i ≤ j− 2, which implies [Li0 , e1] ⊆ Lk+1, [Li0+1, e1] ⊆ Lk+2. We will prove
βi,k+1 = 0 for 2 ≤ i ≤ k− 1.

Let us suppose the contrary, i.e. there exists i such that βi,k+1 �= 0. Let i0 be the
greatest number among indexes such that βi,k+1 �= 0.

Again, consider the property of the derivation

d([ei0 , e1]) = [d(ei0), e1] + [ei0 ,d(e1)] = ((i0 − 1)a0 + 2b 1) βi0,k+1ek+1 + xk+2.
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On the other hand,

d([ei0 , e1]) =
n∑

j=k+1

βi0, jd(e j) = (ka0 + b 1)βi0,k+1ek+1 + yk+2,

where xk+2, yk+2 ∈ Lk+2.
Comparing the coefficients at the basic element ek+1, we get βi0,k+1(b 1 − (k+ 1 −

i0)a0) = 0. Since 2 ≤ i0 ≤ k− 1, we have 2 ≤ k+ 1 − i0 ≤ k− 1.
Taking into account k+ 1 ≤ n and the correctness of one of the following

conditions:

b 1 = (n− 1)a0, a0 = 0, b 1 = −(n− 3)a0,

we deduce βi0,k+1 = 0 for 2 ≤ i ≤ k− 1, which is a contradiction with the assumption
βi,k+1 �= 0. Thus, βi,k+1 = 0 and we have proved that βi, j = 0 for all i, j. 	


Remark 3.14 The proof of Proposition 3.13 shows that the cases α = 0 and α = 1 are
proved analogously.

Proposition 3.13 implies that the table of multiplication of a non-characteristically
nilpotent filiform Leibniz algebra from the third family has the form:

F3(θ1, θ2, θ3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1,

[e0, ei] = −ei+1, 2 ≤ i ≤ n− 1,

[e0, e0] = θ1en,

[e0, e1] = −e2 + θ2en,

[e1, e1] = θ3en,

[ei, en−i] = −[en−i, ei] = α(−1)ien, 1 ≤ i ≤ n− 1.

For such algebras in [22] it is obtained the isomorphism criterion:

θ ′1 = A2
0θ1 + A0A1θ2 + A2

1θ3

An−1
0 B1

, θ ′2 = A0θ2 + 2A1θ3

An−1
0

, θ ′3 = B1θ3

An−1
0

. (3.7)

Theorem 3.15 Let L be a non-characteristically nilpotent f iliform Leibniz algebra
from F3(θ1, θ2, θ3). Then it is isomorphic to one of the following pairwise non-
isomorphic algebras

F1
3 (1,0, 0), F2

3 (0, 1, 0), F3
3 (0,0, 1).

Proof Consider several cases.

Case 1 Let θ3 = 0 and θ2 = 0. Then θ1 �= 0 and

θ ′1 = θ1

An−3
0 B1

, θ ′2 = θ ′3 = 0.

Putting B1 = θ1

An−3
0

, we have θ ′1 = 1 and obtain the algebra F1
3 (1,0, 0).
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Case 2 Let θ3 = 0 and θ2 �= 0. Then we have

θ ′1 = A0θ1 + A1θ2

An−2
0 B1

, θ ′2 = θ2

An−2
0

, θ ′3 = 0.

Putting A0 = n−2√
θ2, A1 = − A0θ1

θ2
, we have θ ′1 = 0, θ ′2 = 1 and obtain the algebra

F2
3 (0, 1,0).

Case 3 Let θ3 �= 0. Then similarly as in the proof of Proposition 3.13 we conclude

θ1 = θ2
2

4θ3
. Then in the isomorphism criterion 3.7 putting B1 = An−1

0
θ3

, A1 = − A0θ2
2θ3

,
we get

θ ′1 = θ ′2 = 0, θ ′3 = 1.

Thus, in this case we have the algebra F3
3 (0, 0, 1). 	
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