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Abstract. This paper is devoted to the complete algebraic and geometric
classification of complex 4-dimensional nilpotent right commutative alge-
bras. The corresponding geometric variety has dimension 15 and decom-
poses into 5 irreducible components determined by the Zariski closures
of four one-parameter families of algebras and a two-parameter family
of algebras (see Theorem B). In particular, there are no rigid complex
4-dimensional nilpotent right commutative algebras.
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Introduction

The algebraic classification (up to isomorphism) of algebras of dimension n
from a certain variety defined by a certain family of polinomial identities is
a classic problem in the theory of non-associative algebras. There are many
results related to the algebraic classification of small-dimensional algebras in
the varieties of Jordan, Lie, Leibniz, Zinbiel and many other algebras [3,7].
Another interesting direction in the classification of algebras is the geometric
classification. There are many results related to the geometric classification of
Jordan, Lie, Leibniz, Zinbiel and many other algebras [4,7,9]. In the present
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paper, we give the algebraic and geometric classification of 4-dimensional nilpo-
tent right commutative algebras. The variety of right commutative algebras
contains commutative associative algebras as a subvariety and it is related to
some interesting varieties of algebras whose definitions we give below.

e An algebra is called a bicommutative algebra [8], if it satisfies the following
identities

z(yz) = y(x2), (zy)z = (z2)y.

e An algebra is called a Novikov algebra [6], if it satisfies the following
identities

(zy)z = (x2)y, (2y)z — x(yz) = (yx)z — y(z2).

One-sided commutative algebras first appeared in the paper by Cayley in
1857 [2]. The variety of right commutative algebras is defined by the following
identity:

(zy)z = (22)y.

Our method for classifying nilpotent right commutative algebras is based
on the calculation of central extensions of nilpotent algebras of smaller di-
mensions from the same variety. The algebraic study of central extensions of
Lie and non-Lie algebras has been an important topic for years [5,10]. First,
Skjelbred and Sund used central extensions of Lie algebras to obtain a classi-
fication of nilpotent Lie algebras [10]. After that, using the method described
by Skjelbred and Sund, all non-Lie central extensions of all 4-dimensional
Malcev algebras were described [5], and also all non-associative central exten-
sions of 3-dimensional Jordan algebras, all anticommutative central extensions
of the 3-dimensional anticommutative algebras, and all central extensions of
the 2-dimensional algebras [1]. Note that the Skjelbred-Sund method of cen-
tral extensions is an important tool in the classification of nilpotent algebras,
which was used to describe all 4-dimensional nilpotent associative algebras,
all 4-dimensional nilpotent assosymmetric algebras, all 4-dimensional nilpo-
tent bicommutative algebras [8], all 4-dimensional nilpotent Novikov algebras
[6], all 4-dimensional nilpotent terminal algebras [7], all 5-dimensional nilpo-
tent Jordan algebras, all 5-dimensional nilpotent restricted Lie algebras, all
5-dimensional nilpotent associative commutative algebras, all 6-dimensional
nilpotent Lie algebras [3], all 6-dimensional nilpotent Malcev algebras, all 6-
dimensional nilpotent Binary Lie algebras, all 6-dimensional nilpotent anti-
commutative algebras and some others.
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1. The Algebraic Classification of Nilpotent Right
Commutative Algebras

1.1. Method of Classification of Nilpotent Algebras

Throughout this paper, we use the notations and methods well written in [1,5],
which we have adapted for the right commutative case with some modifica-
tions. Further in this section we give some important definitions.

Let (A,-) be complex right commutative algebra and V be a complex
vector space. The C-linear space Z2 (A, V) is defined as the set of all bilinear
maps 6: A x A — V such that

O(zy, z) = 0(xz,y).

These elements will be called cocycles. For a linear map f from A to V, if
we define 6f: A x A — V by 6 f(x,y) = f(xy), then 6 f € Z2 (A,V). We de-
fine B2 (A,V) ={0=4f : f € Hom (A,V)}. We define the second cohomology
space H? (A, V) as the quotient space Z? (A,V) /B2 (A, V).

Let Aut(A) be the automorphism group of A and let ¢ € Aut(A). For
0 € Z? (A, V) define the action of the group Aut(A) on Z2 (A, V) by ¢0(z,y) =
0 (6 (), ¢ (y)). It is easy to verify that B2 (A,V) is invariant under the action
of Aut(A). So, we have an induced action of Aut(A) on H? (A, V).

Let A be a right commutative algebra of dimension m over C and V be a
C-vector space of dimension k. For the bilinear map 6, define on the linear space
Ay = A®V the bilinear product “ [, —],,” by [z + 2’y + '] 5, = 2y+0(z,y)
for all z,y € A,x’,y’ € V. The algebra Ay is called a k-dimensional central
extension of A by V. One can easily check that Ay is a right commutative
algebra if and only if 6 € Z2(A,V).

Call the set Ann(d) = {x € A:0(x,A)+0(A,z) =0} the annihila-
tor of 0. We recall that the annihilator of an algebra A is defined as the
ideal Ann(A) = {z € A : xA + Az = 0}. Observe that Ann (Ag) = (Ann(9) N
Ann(A)) @ V.

The following result shows that every algebra with a non-zero annihilator
is a central extension of a smaller-dimensional algebra.

Lemma 1. Let A be an n-dimensional right commutative algebra such that
dim(Ann(A)) = m # 0. Then there exists, up to isomorphism, a unique
(n — m)-dimensional right commutative algebra A’ and a bilinear map 6 €
Z2(A’, V) with Ann(A’) N Ann(6) = 0, where V is a vector space of dimension
m, such that A =2 A’y and A/ Ann(A) = A’.

Proof. Let A’ be a linear complement of Ann(A) in A. Define a linear map
P:A — A'by Plx+v) =z for z € A’ and v € Ann(A), and define a
multiplication on A’ by [z,y]ar = P(xy) for x,y € A’. For ,y € A, we have
P(zy) = P((z — P(z) + P(z))(y = P(y) + P(y)))
= P(P(z)P(y)) = [P(z), P(y)]a-
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Since P is a homomorphism P(A) = A’ is a right commutative algebra
and A/ Ann(A) = A’) which gives us the uniqueness. Now, define the map
0: A’x A" — Ann(A) by §(z,y) = vy —[x,y]ar. Thus, Aj is A and therefore
6 € Z2(A’,V) and Ann(A’) N Ann(6) = 0. O

Definition 2. Let A be an algebra and I be a subspace of Ann(A). If A =
Ay & I then I is called an annihilator component of A. A central extension
of an algebra A without annihilator component is called a non-split central
extension.

Our task is to find all central extensions of an algebra A by a space
V. In order to solve the isomorphism problem we need to study the action
of Aut(A) on H?(A,V). To do that, let us fix a basis eq,..., s of V, and

6 € Z?(A,V). Then 6 can be uniquely written as 0 (x,v) ZQ (z,y) e,

where 0; € Z% (A, C). Moreover, Ann(f) = Ann(6;) N Ann(f2) N .. .ﬁ Ann(6,).
Furthermore, 6 € B2 (A, V) if and only if all §; € B> (A, C). It is not difficult
to prove (see [5, Lemma 13]) that given a right commutative algebra Ay, if we

write as above 0 (z,y) = Z 0; (z,y) e; € Z* (A, V) and Ann()NAnn (A) = 0,
i=1

then Ay has an annihilator component if and only if [64],[02],...,[fs] are
linearly dependent in H? (A, C).

Let V be a finite-dimensional vector space over C. The Grassmannian
Gy, (V) is the set of all k-dimensional linear subspaces of V. Let G, (H? (A, C))
be the Grassmannian of subspaces of dimension s in H? (A, C). There is a
natural action of Aut(A) on G, (H?(A,C)). Let ¢ € Aut(A). For W =
(161].[6a)....,[6.]) € G, (H2(A,C)) define W = ([961].[66s] ... [46.).
We denote the orbit of W € G, (H? (A,C)) under the action of Aut(A) by
Orb(W). Given

Wy = <[61] ) [92] PRI [06]> yWa = <[191] y [192] P [’L%D (H2 (A7(C))
we easily have that if W7 = Wy, then (S] Ann(6;) N Ann (A) = fs] Ann(d;) N
Ann(A), and therefore we can introduz;g the set -
TS(A)—{W—<[01] ,[02],...,[0s]) € Gs (H2 (A,C) ) ﬂ Ann(6;) N Ann(A) = 0} :

which is stable under the action of Aut(A).

Now, let V be an s-dimensional linear space and let us denote by E (A, V)
the set of all non-split s-dimensional central extensions of A by V. By above,
we can write

E(A,V):{Ae 0 (x Ze z,y)e; and <[01],[02],...,[95]>eTS(A)}.
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We also have the following result, which can be proved as in [5, Lemma 17].

S

Lemma 3. Let Ap, Ay € E(A,V). Suppose that 0 (x,y) = Zﬁi (z,y)e; and

=1

9 (z,y) = Zﬂi (x,y) e;. Then the right commutative algebras Ay and Ay are
i=1
isomorphic if and only if

Orb ([61],[62] . .., [6:]) = Orb {[94], [9] ... [0])

This shows that there exists a one-to-one correspondence between the set
of Aut(A)-orbits on T (A) and the set of isomorphism classes of E (A, V).
Consequently we have a procedure that allows us, given a right commutative
algebra A’ of dimension n — s, to construct all non-split central extensions of
A’. This procedure is:

(1) For a given right commutative algebra A’ of dimension n — s, determine

H2(A’,C), Ann(A’) and Aut(A’).

(2) Determine the set of Aut(A’)-orbits on T(A).
(3) For each orbit, construct the right commutative algebra associated with

a representative of it.

The above described method gives all (Novikov and non-Novikov) right
commutative algebras. But we are interested in developing this method in such
a way that it only gives non-Novikov right commutative algebras, because
the classification of all Novikov algebras is given in [6]. Clearly, any central
extension of a non-Novikov right commutative algebra is non-Novikov. But a
Novikov algebra may have extensions which are not Novikov algebras. More
precisely, let N be a Novikov algebra and 6 € Z% (N, C). Then Ny is a Novikov
algebra if and only if

O(zy, z) — O(x,yz) = 0(yzx, z) — O(y, xz).
for all z,y, 2 € N. Define the subspace Z% (N, C) of Z% (N, C) by
ZQN(N,(C) = {9 € Z%(N,(C) (0(xy, 2) — O0(x,yz) = O(yzx, 2) — O(y, x2),
for all z,y,z € N} .
Observe that B?(N, C) C Z%(N, C). Let HE (N, C) = Z% (N, C) /B*(N, C).
Then H% (N, C) is a subspace of H% (N, C). Define
R,(N) = {W € T,(N): W € G,(H}(N,C))},
Uy(N) = {W e T,(N) : W ¢ G,(H{(N,C))}.

Then Ts(IN) = R4(N) U Ug(N). The sets Rs(N) and Uz (IN) are stable under
the action of Aut(IN). Thus, the right commutative algebras corresponding to
the representatives of Aut(IN) -orbits on R,(IN) are Novikov algebras, while
those corresponding to the representatives of Aut(N)-orbits on Ug(N) are not
Novikov algebras. Hence, we may construct all non-split non-Novikov right
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commutative algebras A of dimension n with s-dimensional annihilator from
a given right commutative algebra A’ of dimension n — s in the following way:

(1) If A’ is non-Novikov, then apply the procedure.
(2) Otherwise, do the following:
(a) Determine Ug(A’) and Aut(A').
(b) Determine the set of Aut(A’)-orbits on Ug(A’).
(c) For each orbit, construct the right commutative algebra correspond-
ing to one of its representatives.

1.2. Notations

Let us introduce the following notations. Let A be a nilpotent algebra with
a basis e, ez,...,e,. Then by A;; we will denote the bilinear form A;; :
A x A — C with Ajj(er, em) = 0i10;m. The set {A;;: 1 <14,j < n}isa basis
for the linear space of bilinear forms on A, so every § € Z%*(A,V) can be
uniquely written as 6 = Z cijAij, where ¢;; € C. Let us fix the following
1<i,j<n
notations:
RJi- — jth é-dimensional right commutative (non-Novikov) algebra.

RJi-* — jth é-dimensional right commutative (Novikov) algebra.

1.3. The Algebraic Classification of 3-Dimensional Nilpotent Right
Commutative Algebras

There are no nontrivial 1-dimensional nilpotent right commutative algebras.

There is only one nonzero 2-dimensional nilpotent right commutative alge-

bra (it is the non-split central extension of 1-dimensional algebra with zero

product):

R(Q)’{ ieje; = ea.

It is known the classification of all non-split 3-dimensional nilpotent right
commutative algebras:

Rg; je1e] = e3 €9y = e3

RS; 1 €16 = €3 €2€1 — —€3

R35(N\) s ere; = Ae3 ese; = €3 egen = €3
Rg; 1 €1€1 — €2 €92€1 = €3

R35(A\) te1e1 =ex ejea =e3  eae; = Aes.

1.4. Central Extensions of 3-Dimensional Nilpotent Right Commutative
Algebras

1.4.1. The Description of Second Cohomology Spaces of 3-Dimensional Nilpo-
tent Right Commutative Algebras. In the following table we give the descrip-
tion of the second cohomology space of 3-dimensional nilpotent right commu-
tative algebras. where R37 = R2} & C.
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R H(R) H(R)
Rj; (B[], [A0i], [Aai]. [Aaal)  BR(RE) © ([Aae])
R; (1812], [Ani], [Baa]) H(R) © ([Aus], [A24])
R3; (1An], (o], [Az]) () & ([Asg], [Aas] )
Rii(Waso ([Aul,[Are], [Aai]) H(RE ) @ ([Ars], [A2s])
RE(0)  ([Aul[Aw] (A1) HA(RE(0) @ ([Aar + As])
[Ars—Ag1 — Aga], [Azs])
R <[A12], [Ags — A31]> HY (RE) @ <[A31]>
R (M) a0 <[A21], (2= M)A+ I<{[21\1A(21;{§§ (21)1@_ A13]>
B2z + Ag1)])
REO) ([ 21A0)) ?{“A(Rfi))@_ Av (A

1.4.2. Central Extensions of Rg;. Let us use the following notations:

Vi=[A12], Va2=[A1], Vz=[A21], Vi=[Az], Vs=[Az3], Ve=[Asz].
6

Take 6 = Y «;V,; € Hi(R3;). The automorphism group of RJ3; consists

i=1
of invertible matrices of the form

z 0 0
o= 1y 2w
z 0 t

Since
0 o1 o o of  aj
o' s 0 0)o=az 0 0],
o4 ag Qp oy of  of
6
we have that the action of Aut(R3}) on the subspace (> a;V;) is given by
i=1

6
(3" afV,;), where
i=1
o] = a1z’ + agr?z o = 12U + asxt + a2t + agzu
of = asx’ o) = o3Tu + auxt + as2t + agyt
of = ast? + agut o = ezt
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Since HE (R37) = H&(R3}) & (Ve) and we are interested only in new
algebras, we have ag # 0. Then putting z = —%:, u = _Oo% and y =
(viastagas—asas)z

og

, we have the following

(asag—aias)xt

L L [ *
ol =a; =05 =0 a3= oo

af = azr®  af = agrt.
Consider the following possible cases.
(1) a3 # 0, asag — aqas # 0, then choosing z = “20‘60[;%0‘1“5 and t =
%{al%), we have the representative (Vo + V3 + V).
2) a3 =0, asag — ajas # 0, then choosing x = 9295=21% apd ¢ = 1 we
«
6
have the representative (Va + V).
3) az #0, asag — ayas = 0, then choosing x = 1 and t = 22 we have the
ag
representative (Vs + V).
(4) ag =0, agas — ajas = 0, then we have the representative (V).

Hence, we have the following distints orbits
(Vo + V3 + V) (Vo + Vi) (V3 + Vi) (Ve),
which give the following new algebras:

Rgl 1e1€] = €9 €163 = €4 €96 = €4 €369 = €4
Rég jeje1 = e €163 = €4 €36y = €4

R613 1e161 = €3 €261 = €4 €369 = €4

R§4 jeje1 = e €36y = €y4.

1.4.3. Central Extensions of Rg;. Let us use the following notations:
Vi=[A12], Va=[Az21], Vz=[A2], Vi=[A13], Vs5=[Ass].

5
Take 6 = Y o;V,; € Hi(R35). The automorphism group of R3j; consists
i=1

=
of invertible matrices of the form

r -y 0 T Y 0
1=y T 0 or ¢go=1y —x 0
z t x2 + 92 z t 2% + 2
Since
0 aq (o7} o Oflk 0‘1
ol laz a3 as|di=|as o +a5 ail,
0 0 0 0 0 0

we have that the action of Aut(R35)" (it is the subgroup in Aut(R3}) formed
5

by all automorphisms of the first type) on the subspace (> «;V;) is given by
i=1
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5
(3" afV,;), where

i=1
o] = a2 — aoy? + asay + agxt + asyt
a§ = —a1y2 + a2x2 + a3y — Yz + a5x2

al = —2a12y — 200wy + az(2? — y?) — au(yt + 22) + as(zt — yz)

aj = (o + azy)(a® +y°)

ai = (—agy + asz)(2? + y?).

Since H% (R35) = HE (R35) @ (V4, Vs) and we are interested only in new

algebras, we have (a4, as) # (0,0). Moreover, without loss of generality, one
can assume «y 7# 0. Then we have the following cases.

2 2
2 2 o _ zas _ (apaf—ajaj—agazas)x o
(1) o —|—20¢527é 0, then choosing y = #7=, ¢ = ci(oiTad) , 2 =
(as(af—az)—2a405(a1+asz))z
il tad) , we have
(a2az—as(aias—asas))s? z3(a24+a2)?
o =af=af =005 ="+ o2 o) = 325 .

(a) aas —as(aras —agas) = 0, then we have the representative (V).
as(ajoas—as(aias—asaz))

(b) a2ag—as(ajas—agasz) # 0, then choosing z =

(afta3)? ’
we have the representative (Vy + V).
(2) a2 +a2 =0, ie., a5 = Fiay, then choosing
. _a1x2 — any? + azzy L —2a12y — aa(yt Fixt) — 2azy + 043(902 — yz)
a4z +4y) ’ a4z +1y) ’
we have
. 2, 2\2
OéﬂlK = O(; = 0 OZ; = (a1+a2j;:§f)(; +y )

)
af = ay(z £iy)(2? + y?) af = *ag(z +iy)(2? + y?).
(a) a1 4+ ag +iaz =0, then we have the representative (V4 £iV5).
(b) a1 + ag £ iag # 0, then choosing x = %ﬁf"’“ and y = 0, we
have representative (Vo 4+ V4 +iV5). Since the automorphism ¢ =
diag(1,—1,1) acts as
¢<V4 + iV5> = <V4 — iV5> and ¢(Va + V4 + iV5) = <V2 + V4 — iV5>,
we have two representatives of distinct orbits (V4 +iVs) and (Vo +
Va4 + iV5>.
Summarizing, we have the following distinct orbits:
(V) (Vo + V4) (Va4 +iV5) (Vo + V4 +iV5).
Hence, we have the following new algebras:
R‘gs cejer

1

Ryg : erer
1

Ry, : ereg

€3 €1€3 = €4 €2€2 = €3

e3 e1€3 = €4 €2€1 = €4 €ze3 = €3

e3 e1e3 = e4 €€z = €3 €ege3z = i€y

s N
R‘OS L erep €3 €1€3 — €4 €2€1 — €4 €2€2 — €3 €2€3 = 1€4
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1.4.4. Central Extensions of Rg;. Let us use the following notations:
Vi=[An], Ve=[An], Vi=[An], Vi=[A], Vs5=[Asy]
5
Take 0 = > o;V; € H4(R33). The automorphism group of R3% consists

i=1
of invertible matrices of the form

T u 0
o=y v 0
z t zUv—yYu
Since
a0 oy o] of
¢T ay a3 o5 |¢o=|as—a" a3 ail,
0 0 0 0 0 0

5
we have that the action of Aut(Rg3) on the subspace (3 «;V;) is given by
i=1

1=

5
(> arV,), where
i=1

o] = oz + Ty + a3y2 + oz + a5yz

a3 = 20120 + as(yu + xv) + 2a3yv + ayg(wt + zu) + as(zv + yt)
a3 = a1 u? + asuv + asv? + ayqut + asut

o = (ayux + asy)(zv — yu)

o = (oqu + asv)(zv — yu).

Since HE (R35) = HXA(R35) & (V4, Vs), we have (aq, a5) # (0,0). More-

over, without loss of generality, one can assume ay # 0. Choosing u = —%—5‘:’,
2 2
. 2 2
, = iz +asxy+azy and + — — aizutaz(zvt+yu)+ (13],/1), we have
agr+asy agrtyas
2 2 2 2
ok % x _ (anag—asagastagai)v”  «  v(ouztoasy)
o] =ay =05 =003 = o2 oy = o

We find the following new cases.
(1) a102 — asauas + azaj = 0, then choosing v = (Mwii‘;sy)% we have the
representative (V).

2
ay(aztasy) ., we

2 _ 2 ; _
(2) aras — asagas + azaj # 0, then choosing v = PO S————

have the representative (Vs + V).

Summarizing, we have the following distinct orbits
(V4) (V3 + V).

Hence, we have the following new algebras:

4 . — — —
R09 1 €1€2 = €3 €1€3 = €4 €2€1 = —€3

4. — — — —
RlO 1 €1€2 — €3 €1€3 — €4 €2€1 — —€3 €2€2 — €4.
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1.4.5. Central Extensions of R3%(X\)xz0. Let us use the following notations:
Vi=[Au], Va=[Ap], Vi=[Axn], Vi=[Ay], V;=I[Ax]
5
Take 6 = Y a;V; € HE (R35()\)a0). The automorphism group of R3;(A) 20

i=1
consists of invertible matrices of the form

T Y 0
z t 22 — zy + \y?
Since
a1 g oy ol + A" a3 o}
¢T ag 0 as | o= a3 +aF o af |,
0 O 0 0 0 0

5
we have that the action of Aut(Rg}(A\)a0) on the subspace (Y «;V;) is given
i=1

by <Z5: afV;), where

i=1

af =220 + xzay — Az(2y(az + az) + tas)
FAy(y(—a1 + ag + ag) — tag + tas — zas)

ay = xy(a; — ag) + 220 + tway — A\y(yas + tas)
al = zy(a; — ag — 2a3) + 22az + y?(—a1 + ag — Aag + az)

—y(t — 2)(ag — ap) + (2 — t)a
af = (agzr — az\y)(2? — zy + \y?)
af = (agy + as(z —y))(2® — 2y + Ay?).

Since HE (R3; (M) ax0) = HE (R35 (M) az0) ® (Va4, Vs), we are interested in
(as,a5) # (0,0).
Then we have the following cases.

(1) a5 =0, then ay # 0 and choosing y =0, t = —<L 2z = 23 e have

a4’ Qg
* ok ok * 2 * 3
o] =ay =a5 =0, oa3=a3x", oy =asx".

(a) ag =0, then we have the representative (V).
(b) az # 0, then choosing z = 2, we have the representative (V3+Vy).
(2) as # 0 and a2 — agas + a2\ # 0, then choosing x = O‘sa_:“ and y = 1,
we have af = 0 and it is the situation considered above.
T

(3) a5 # 0 and aF — agas + a2\ = 0, then choosing y = 0, t = ,

yq

z(araatAazas)

z=— 5 , we have
ay

2 2
_ Nevs —
z”(azay 065(041;1;;-&-042( as—ay))) O‘Z x3a4 ag 333a5.
i

* ok *
o] =a; =0a3 =

(a) aza? = as(aras + az(Aas — ay)), then we have the representative
(Va+ B85 V5).
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(b) aza? # as(aiay + as(Aas — ay)), then we have the representative
(Vs 4V, + L=V,

Summarizing, we have the following distinct orbits

(Vy) 2AV4+ (1 — 1 —4N)V5) (2A\V3 +2A\V,4 + (1 — V1 — 4\)V5)
(Vs 4+ Vy) 2AV4+ (1 4+ V1 —4XN)V5) 2AV3 + 22V + (1 + V1 —4N)V5).

Hence, we have the following new algebras:

R‘lll ()\)A#O Leje;p = )\83 €13 = €4 €2€1 = €3 €2€2 = €3
RI,(Mago €161 = Xeg e1ez = eq  epe1 = ez +eq  egen = e3
R‘llz,,()\))\#o teje; = Aes ejez = 2)\ey exe; = e3 eses = ez esez = (1 — /1 —4X)ey
R‘ll4()\)>\¢0 :erje1 = dez ejez = 2heyq ese; = e3 esex = e3 ezez = (1 + /1 —4N)ey
R%S(A)Ayéo Tere; = des eres = 2Xeyq ese; = e3 + 2Xey eses = ez esez = (1 — /1 —4)\)ey
R%@(A)%;ﬁO L ejep = A63 ejes = 2A64 egxe] = e3 + 2}\64 €2€2 =— €3 €2€3 = (1 + \/1 — 4A)64

1.4.6. Central Extensions of R3%(0). Let us use the following notations:

Vi=[Anl, Va=[Awn], Vs=[Axn], Vi=[A13— A3z —Asl,
Vs = [Azg], Ve = [Agl + Agg].

6
Take 6 = > «;V; € HE(R3;(0)). The automorphism group of R} (0)
i=1
consists of invertible matrices of the form

r z—y 0

o=10 y 0

z t Ty

Since
a1 a2 Oy
T
¢ as 0 as
Qg — Oy Qg — Qg 0
o] o o
_ * * * *
p=| a3+« o as |,
* * * *
ag—ay oasg—ay 0

6
we have that the action of Aut(R3;(0)) on the subspace (3" a;V;) is given by
i=1

6
(> arV;), where
i=1
af = z(zag + zag) oy = x(zag + y(—a1 + az) + tay — zay + zag)
o = zy(ar — ag) + ¥ (—a1 + ag + az) + (—t + 2)ag + y(t — 2)(a — )
af = 2’yoy a; = ay((z — y)as + yas) af = 2?yas

Since HE (R35(0)) = HZ(R35(0)) @ (V), we are interested in ag # 0.
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(1)

ag # 0, ag # a5 and azay — (a1 — ag)as # 0 then by choosing x =

a304(4—(f¥1—)a2)a5 _ a4(043(a4—((¥32—042)(15) P 0!1(—04&3%-*-(04)1—2@2)%) and
aq—as)ag ’ ag—as)?ag ? ag—as)ag
t = —lasaa—(a—as)as)(ai(aaas—aes)+azae) e have the family of repre-

(aa—as)2a
sentatives (Vi + aV4 + Vg)azo.
as

ay #0, ag # a5 and agay— (a1 —ag)as = 0 then by choosing x = 1— oo

alaa=as) gng ¢ = =@2actar(Zaitastas) e have the family

Qg [eZely]
of representatives (aVa4 + V) a0
ay # 0, ag = a5 and a1 — as — ag # 0 then by choosing x = 1, y =

e, @ — _a (o1 —az)as :
—oriesTas 2= —ap and t = =Tt + — R, we have the family

of representatives (Vs + aVy + aVs + Vi) axo-
ay # 0, ay = a5 and a3 = s + ag then by choosing z = 1, y = 1,

z = —% and t = 192 — 2 we have the family of representatives
Qg Qs Qg

<04V4 + aVs + V6>o¢750-
ay =0, as # 0 and a; # as, then by choosing x = _O‘(;:a?, y= _‘X&jo‘Z’,

y:17Z:

- al(ﬂt;;%) and ¢ — (011*012)(041(ag*asaﬁ‘i’a%);aﬁ(asaﬁ"’o&z(*0454’046)) we

6 A5
have the representative (Vg + V5 + V).
ay = 0, a5 # 0 and a1 = ag, then by choosing x = 3—27 y=1 z=

_as and ¢ = —atortas al(a5*ag)+a2as
Qg as Qg

(V5 + V).

ay =0, a5 =0, a1 # as and a1 # as + a3 then by choosing x =

_ (a1 —a»)? = aq (a1 —asg)
y= (1 —as—asz)ag’ - aZ

<V2 —|—V6>.
as =0, a5 =0, a1 # az and a; = az +ag then by choosing z = §2, y =

1, z= —w and t = 0 we have the representative (—Va+V3+ V).

we have the representative

—ag+tas
(673 )

and t = 0 we have the representative

6
(9) ag =0, a5 =0, a3 = a2 and a3 # 0, then by choosing z =1, y = g—g,
z=—22 and t = 0 we have the representative (V3 + V).
(10) a4 =0, a5 = 0, a1 = ay and as = 0, then by choosing z = 1, y = 1,
z=—52 and t = 0 we have the representative (V).
Summarizing, we have the following distinct orbits:
(Va2 + V) (V3 +aVa+ Ve)axo (aVa+ Vehaxo (Vs +aVy+aVs + V)

(aV4+ aVs + V) (Vo + Vs + Ve) (Vs + V) (=V2 4+ V3 + V).
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Hence, we have the following new algebras:

R 1C1C2 = G €201 T €3 exez = e3 eze1 = ey ezez = eq
Rig(0)axo : e1e3 = ey ese; = ez +es  esea = e3 ezer = (1 — a)es ezes = (1 — a)ey
R%Q(a)"‘#o P13 = ey €2€1 = €3 eses = e3 eze; = (1 — a)eq egex = (1 — a)ey
Ro(a) teleg = ey eze; =eg+ ey exex = €3

sy = ey ezer = (1 — ajes ezes = (1 —ajes
R31(a) i e1e3 = aeq ese1] = e3 eaes = €3

azaz = aey ezer = (1 — a)es eger = (1 — ey
R P €162 = €4 €261 = €3 egey = €3 ege3 = €4 eze; = eq ezez = ey
Ry P ezel = €3 €2e2 = €3 exe3 = €4 €3€1 = €4 ezey = ey
R2i terex =eq4 eze1 =ezteq ezex =e3 e3e1 =€y ezez = ey

1.4.7. Central Extensions of Rg;. Let us use the following notations:

Vi=[Ap], Vi=[A13-Az], Vi=I[Az]

3
Take 0 = > a;V; € Hi(RJ:). The automorphism group of
i=1
R3: consists of invertible matrices of the form
z 0 0
o=y 22 0
z wy a3
Since
0 aq Qg o o] aj
oT 0 00 |¢= a** 0o 0],
a3 — Qg 0 0 Oé?g< *Olg 0 0

3
we have that the action of Aut(Rg%) on the subspace (3 «;V;) is given by
i=1
3
(> arV,;), where
i=1

af = 22 (a7 + agy) b = asrt af = aza’.
Since H (R3:) = HE (R3:) @ (V3), we are interested in ag # 0.

(1) ag =0, then we have the representatives (V3) and (V; + V3) depending
on whether vy = 0 or not.

(2) az # 0, then choosing = 1 and y = —2, we have the family of
representatives (a«Va + V3)az0.

Summarizing, we have the following distinct orbits
<V1 + V3> <O[V2 + V3>
Hence, we have the following new algebras:

R,‘215 . €1€1 = €2 €1€2 = €4 €2€1 = €3 €3€1 = €4
4 .
Ris(a) :erer

e2 e1e3 = aeq exe1 = e3 ezer = (1 — a)es
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1.4.8. Central Extensions of R3%(X\)xz0. Let us use the following notations:

Vi=1[An], Voa=[2-NA13+ A0+ A31)], V3=[As+ Az — Azl

3
Take 0 = >~ a;V; € H (R35 (M) az0). The automorphism group of R3% (M) 0

i=1
consists of invertible matrices of the form
x 0 0
o=y x? 0
zay(1+\) 23
Since
0 0 (2 — )\)042 — Q3
¢T (&3] )\062 + a3 0 ¢ =
Aag + ag 0 0
a* o (2= Nas — o
o + Aot Ao + af 0 ,
Ao + o 0 0

3
we have that the action of Aut(Rg§(A\)a0) on the subspace (Y a;V;) is given
=1

3
y (> afV;), where
=1

af = 2% (zar + y(Nag + 203 + Aag + A2 (az — az))) a = asr? of = azr?.

Since HE (R35(N)az0) = HE(R3E(N)az0) @ (Vs), we are interested in
az # 0. We have the following cases.
(1) Xag + 2a3 + Aag + A%(az — ag) # 0, then we have the family of repre-

sentatives (aVy + V3) g ZEAEAZ -
(1=—2)A2

(2) /\3a2+2a3+)\a3+)\2(a3 ag) =0, 75 1 then we have two representatives
(B2 Va + V) and (Vi + 35535V + V).

(3) if A =1, then Mg + 2a3 + Aag + A% (a3 — a2) = 4az # 0, and we have
a case considered above.

Summarizing, we have the following distinct orbits
<OéV2 + V3> <(1 — )\)>\2V1 + (2 + A+ )\2)V2 + (1 — )\))\2V3>)\¢0’1.

Hence, we have the following new algebras:

R‘217()\,a))\7go teler = eo elea = e3 eres = (2a—aX — 1)es
eze1 = Aes ezez = (aX+ 1)esa eser = (X + 1)es
Rés()\)k¢0,1 L e1e1 = e €1€2 = €3 e1e3 = 464

ese1 = ez + AQ(l — )\)64 eg€2 = 2/\(1 =+ /\)64 eze] = 2)\(1 + )\)64.
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1.4.9. Central Extensions of R3%(0). Let us use the following notations:

Vi=[An], Va=2[A3], V3=[As+ Az —A3], Vi=[Ag)].

4
Take 0 = Y «;V,; € H&(R35(0)). The automorphism group of R (0)
i=1
consists of invertible matrices of the form

z 0 0
o=y 22 0
z xy a8
Since
0 0 202 —oa3 o o™ 205 —aj
o7 o az 0 p=\|a] of 0 ,
a3 Qg 0 oz g 0

4
we have that the action of Aut(R35(0)) on the subspace (> o;V;) is given by

=1
4
(> afV,;), where
i=1
1
af = z(220q + 2wyaz + yiag) o = vtas + §x3ya4
o = 23 (rag + yau) aj = 15ay.

Since HE (R35(0)) = HZ(R35(0))®(V3, V4), we are interested in (g, cg) #
(0,0). We have the following cases.
(1) a4 # 0 and 2a5 # az, then by choosing x = _2%2'0‘5 and y = 0‘3(0‘23#_320‘2),
we have the family of representatives (aV; + Va + V).

(2) a4 # 0 and 2ae = a3 then by choosing y = f%, we have two represen-
tatives (V1 + V4) and (V4) depending of a3 # ajay or not.
oy

(3) a4 = 0, ag # 0, then by choosing z = 1 and y = —3--, we have the
family of representatives (aVay + V3).

Summarizing, we have the following distinct orbits
<04V2 + V3> <04V1 + Vo + V4> <V1 + V4> <V4>.
Hence, we have the following new algebras

R1.(0,a) : ere; = ez e1ea = e3 ere3 = (2 — 1)eq eaea = €4 eze; = ey
R%Q(a) 1 €1€1 — €2 €1€9 — €3 €1€3 — 264 €9€1 — (X€yq €3€2 — €4
R%O 1 €1€1 = €9 €1€9 = €3 €2€1 = €4 €3€y = €4

R§1 1 €1€1 = €2 €1€9 = €3 €3y = €4.
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1.5. Classification Theorem

Now we are ready summarize all results related to the algebraic classification
of complex 4-dimensional nilpotent right commutative algebras.

Theorem A. Let R be a complex 4-dimensional nilpotent right commutative
algebra. Then R is a Novikov algebra or isomorphic to one algebra from the
following list:

4 . _ _ — —
Ry, teje; = ey eje; = ey ese; = ey ezey = ey
R/, D eje; =e, ee; = ey ezey = ey
1 K — — —
R, L eje; = ey egeq = ey ese, = ey
Réa ieje; = ey, esze; = ey
1 , = —
RO, cee =e3 ejez; = ey eyey = eg
1 _ — — — —
110G i eje = ez ejez3 = ey eye; = ey ezey; = ez
1 R — — — —
Ry i eje; =e3 eje; = ey esey = e3 esez = iey
R? D eje; =e; ee; = ey ere; = ey erey = ey eses = iey
3 . — — —
Ry, teje; = e3 eje; = ey ese; = —ey
R}, D ejes = e3 eje; = ey ere; = —ey enes = ey
1 X — — — —
RI (Magzo  t eie; = deg ejez = ey e,e; = ey esey, = e3
T K — — — —
RL,(Mazo ©erer = hes eres = es crer = 5+ eq cres = e
Rf (Mazo @ eje; = deg ejes = 2hey ere; = eg esep, = eg esez = (1 — /1T —4X)ey
T
R, (Mazo  : erer = deg ejes = 2Xey ere; = ey esey = eg esez = (1 4+ /1 —4X)ey
R (Mazo @ e1e1 = Aeg ejes = 2Xey ese; = ez + 2Xey esey = €3 eres = (1 — /T — AN)ey
RI (Mago @ e1e1 = Aeg ejes = 2Xey ese; = e + 2Xey eses = €3 eres = (1 + /T — 4N)ey
3 . — — — — —
1 P €16z = €4 €2€1 E €2€2 = €3 €3€1 = €4 €3€2 = €4
R' (0)azo : €105 — ae; eaei — ¢ + e1 caes — ey cser = (1—a)es _eges = (1— a)ey
1 K — — — — —
Rig()azo : e1e3 = cey eze; = ey eyey = €3 ese; = (1 — a)ey eser; = (1 — a)ey
Rl (a) D eje3 = aey ese; = ez + e erex = e
20 1€3 4 €2€1 3 4 2€2 3
ere; = aey eze; = (1 — a)ey eze; = (1 — a)ey
T X — — —
R;, (@) :eje; = aey eye; = ey esey = €3
ezes = aey eze; = (1 — a)ey eszexs = (1 — a)ey
R; i erey = eq  eze; = ey eses = e ese; = ey ese; = eq egey = ey
R : ege; = ez epey = eg esez = ey eze; = ey esey, = ey
B
R;, ceje; = ey ese; = ez + ey esey = e3 eze; = ey eszey = ey
R D eje; = ey ejey = ey ese; = ey eze; = ey
R (o) T eje; =€y ejez = ey ese; = ey ese; = (1 — a)ey
R (N, a) :ee =e; eje;=e;y ejez3 = (2a — aX — 1)ey
eye; = Xeg ezey = (aX + 1)ey eze; = (aX + 1)ey
RI (\)a D eje; =ey, eep =e e e3 = de
28 #0,1 1 €1€; 2 1€2 3 1€3 4
ese; = deg + A2(1 — Ney eses = 2X(1 4+ N)ey eze; = 2X(1 + N)ey
R‘19(o<) i ejep = e; eje; = eg eje; = 2ey eye; = ey ezey = ey
1 K — — — —
Ry, i eje; = e;  eje; = eg eye; = ey ezey = ey
R ejep = e eje; = e ezey; = e
31 Teje; 2 1€2 3 3€2 4

2. The Geometric Classification of Nilpotent Right
Commutative Algebras

2.1. Definitions and Notation

Given an n-dimensional vector space V, the set Hom(VeV,V) 2 V*@V*®V is

a vector space of dimension n?. This space has the structure of the affine variety

c. Indeed, let us fix a basis eq,...,e, of V. Then any p € Hom(V®V,V) is
n

determined by n? structure constants cfj € C such that p(e; ®ej) = > cf?jek.
k=1

A subset of Hom(V @ V,V) is Zariski-closed if it can be defined by a set of

polynomial equations in the variables ci—“j (1<i,j5,k<mn).

Let T be a set of polynomial identities. The set of algebra structures on
V satisfying polynomial identities from 7" forms a Zariski-closed subset of the



24 Page 18 of 21 J. Adashev et al. Results Math

variety Hom(V ® V,V). We denote this subset by L(T"). The general linear
group GL(V) acts on L(T") by conjugations:

(g u)(z®y) =gulg 'z g 'y)

for z,y € V, p € L(T) € Hom(V ® V,V) and g € GL(V). Thus, L(T) is
decomposed into GL(V)-orbits that correspond to the isomorphism classes of
algebras. Let O(p) denote the orbit of p € L(T') under the action of GL(V)
and O(p) denote the Zariski closure of O(u).

Let A and B be two n-dimensional algebras satisfying the identities from
T, and let pu, A\ € L(T') represent A and B, respectively. We say that A de-

generates to B and write A — B if A € O(p). Note that in this case we have
O(\) € O(p). Hence, the definition of a degeneration does not depend on the
choice of p and A. If A 2 B, then the assertion A — B is called a proper
degeneration. We write A / Bif A & O(p).

Let A be represented by p € L(T'). Then A is rigid in L(T") if O(u) is an
open subset of L(T"). Recall that a subset of a variety is called irreducible if it
cannot be represented as a union of two non-trivial closed subsets. A maximal
irreducible closed subset of a variety is called an irreducible component. It is
well known that any affine variety can be represented as a finite union of its
irreducible components in a unique way. The algebra A is rigid in L(T") if and
only if O(y) is an irreducible component of L(T').

Given the spaces U and W, we write simply U > W instead of dim U >

dim W.

2.2. Method of the Description of Degenerations of Algebras

In the present work we use the methods applied to Lie algebras in [4,9]. First of
all, if A — B and A % B, then Der(A) < Der(B), where Der(A) is the Lie alge-
bra of derivations of A. We compute the dimensions of algebras of derivations
and check the assertion A — B only for such A and B that Det(A) < Der(B).

To prove degenerations, we construct families of matrices parametrized
by t. Namely, let A and B be two algebras represented by the structures g and A
from IL(T)) respectively. Let ey, ..., e, be a basis of Vand ¢f; (1 <4,j,k < n) be

the structure constants of  in this basis. If there exist a/(t) € C (1 <i,7 < n,

n

t € C*) such that Ef = >~ al(t)e; (1 <i < n) form a basis of V for any ¢ € C*,
j=1

and the structure constants of u in the basis Et, ..., E! are such rational

functions ¢f;(t) € C[t] that ¢;(0) = ¢}, then A — B. In this case EY,..., E,
is called a parametrized basis for A — B. To simplify our equations, we will
use the notation 4; = (e;,...,e,), i =1,...,n and write simply A,A4, C A,
instead of ¢f; =0 (i > p, j > ¢, k>r).

Since the variety of 4-dimensional nilpotent right commutative algebras
contains infinitely many non-isomorphic algebras, we have to do some addi-

tional work. Let A(x) := {A(a)}aecr be a series of algebras, and let B be
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another algebra. Suppose that for « € I, A(a) is represented by the structure
(o) € L(T) and B € L(T) is represented by the structure A. Then we say
that A(x) — Bif A € {O(u(@))}aer, and A(x) /A Bif A & {O(u(e)) }aer-

Let A(x), B, (o) (o € I) and X be as above. To prove A(x) — B it
is enough to construct a family of pairs (f(t), ¢g(t)) parametrized by t € C*,
where f(t) € I and g(t) € GL(V). Namely, let e1,..., e, be a basis of V and ¢};
(1 <1i,7,k <n) be the structure constants of A in this basis. If we construct
al :C* - C (1 <i,j<n)and f: C* — I such that E! = Y al(t)e;

j=1

(I <4 < n) form a basis of V for any ¢ € C*, and the structure constants
of fif(py in the basis Ef, ..., B}, are such rational functions cj;(t) € C[t] that
cfj(O) = cfj, then A(x) — B. In this case Ef,..., E! and f(t) are called a
parametrized basis and a parametrized index for A(x) — B, respectively.

We now explain how to prove A(x) 4 B. Note that if Der A(w) > Der B
for all a € I then A(%) 4 B. One can also use the following Lemma, whose
proof is the same as the proof of Lemma 1.5 from [4].

Lemma 4. Let B be a Borel subgroup of GL(V) and R C L(T') be a B-stable
closed subset. If A(x) — B and for any « € I the algebra A(a) can be repre-
sented by a structure p(a) € R, then there is A € R representing B.

2.3. The Geometric Classification of 4-Dimensional Nilpotent Right Commu-
tative Algebras

The main result of the present section is the following theorem.

Theorem B. The variety of 4-dimensional nilpotent right commutative algebras
has dimension 15 and it has five irreducible components defined by infinite
families of algebras Riy()\), Rig(a), R3-(\, ), Rig(a) and Nayy(a).

Proof. Recall that the description of all irreducible components of 4-dimensional
nilpotent Novikov algebras was given in [6]. Using the cited result, we can see
that the variety of 4-dimensional Novikov algebras has two irreducible compo-
nents given by the following families of algebras:

4 . _ _ _ _ _ _
Nip(a) s etes = e3 ere; = aey e1e3 = ey €2€2 = €4 €263 = €4 €362 = —€4
N3(\) s e1e1 =eo erea =es erez = (2 — Nes exe1 = Aea esea = Aes ezer = Aea

Now we can prove that the variety of 4-dimensional nilpotent right com-
mutative algebras has five irreducible components. One can easily compute
that

Der Nij(a) =3 Der R}, (V) =2 Der Rig(a) =2 Der R, (A, a) =3 Der Rig(a) =2

Hence, algebras Ri,()\), Rig(a), R3-(\, @) and Riy(a) give components of
the same dimension. It is easy to see that algebras R},()\), Rig(a), R3-()\, )
and R34 () are satisfying the following condition R = {u|4243 = 0}, but the
algebras Ny do not satisty it. Hence, the family of algebras Na, () gives an
irreducible component. The list of all necessary degenerations is given below:
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Ry (A +t, — E Tit E! = te; Bl = t?ey Bl = t'es El = — flue,l
—  NL(\)
R2 (t71) — RZ E! = 2e, 8t~
9. 01 1
R}, (0) — R} E! = 2e, 4t~
Ry, (t7%) — R, Bl =t 'e; 4t Sey
R:Q(U) — R§4 E; = t’je| rj
R, — R, El =t"'e; t e,
06 05 1
R}, (L —2) — Ry B! = te; + tey te,
Ri (L = R, B =, 2t~ ey
Ry, (S5 — Ry, B! = —2te; + tes + tes — e
R2 (—1,1) — Ry, El = te; 2t%e,
Ry (—1,14+¢t) — R El = te; Bl = —t(3t 4 2)e; —t3(3t + 2)%ey
R, (M) — R (V) [El =tle; Bl =t ley t Sey
R (M) — RLO)[E =t 'e; El =t"'e t—2e,
R (M) — R, (V) [E =t e . e E! = f* — =t e,
4 4 t o t t(1—+1—-4 t(1—1—4. 2t+
RY, () = REOV[B] = e - TR, — DR
Bt — 4(17 TIX) 4% — L(17 /I—4X) )\+1)(1— /T—ax— 20
2 T T an(ttn) 1 AN(E+N) 2Nt A2 3
t t* £ -VT=ax) t o t
Es = NGtn® ©3 T zx(r+,\)‘ €4 Bi = sy &
4 t _ _t tA+V1— ZEVI TtV 4A)(2L+>\)
R, (N) — RN | B} = 561 — 2043) - 2(t
Bt = ta+ /1—“) o ae? —1(1+ /T— M)? _ tO+1D) (1+~/174/\72)\) e
2= Taonrn O 4)(?«#,\) 2A(E+A)? >3
t t P (A+V1-4X) t tt
By = saopes Tt 2>\(t+>\)’ fes By = soiap o
R () — R, E! = (1 - t)e, . EL = (1—t)e, — ey
Ef = (t —1)%e; + = e E! = (t — 1)%e,
R, (o) — Ri (o) | Bl =t e Bl =t ley B! =t 2ey El =t e,
o 1 [R— (- 7
Rig (@) = Ryp(e) B= e . B2 = a0
By = (a—D(a—1362 3 o 1)(a— L0+ c4 Ei= oo (0 10 ©
R (a) — =t Bl =t E! =
RI (1) — Bl
18 2
Et e
4 n(|—2?)3’ 4
R — L El =t'e Bl =t e El =t e,
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