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1. Introduction

It is known that any n-dimensional algebra L over a field F is regarded as an element λ of affine
variety Hom(V ⊗ V , V ) via the bilinear mapping λ : V ⊗ V → V on underlying vector space V of L.

Since the space Hom(V ⊗ V , V ) forms an n3-dimensional affine space B(V ) over F , we will con-
sider the Zariski topology on this space and the linear reductive group GLn(F ) acting on the space as
follows:

(g ∗ λ)(x, y) = g
(
λ
(

g−1(x), g−1(y)
))

.

The orbits (Orb(−)) under this action are the isomorphism classes of algebras. It is clear that if
a subvariety of Hom(V ⊗ V , V ) is specified by an identity or identities like commutativity, skew-
symmetricity, nilpotency, etc. then it is invariant under the action ∗. The closures of orbits under this
action play a crucial role in the description of irreducible components of a variety of algebras. Since
the closure of an open set gives rise to irreducible components of a variety, those algebras whose

* Corresponding author.
E-mail addresses: khabror@mail.ru (A.Kh. Khudoyberdiyev), omirovb@mail.ru (B.A. Omirov).

0024-3795/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2013.09.020



Author's personal copy

A.Kh. Khudoyberdiyev, B.A. Omirov / Linear Algebra and its Applications 439 (2013) 3460–3463 3461

orbits are open (they are called rigid algebras) generate the irreducible components. The method of
degenerations is one of the tools of finding the rigid algebras. The degenerations of algebras can be
represented by “arrows”. Since there is no algebra that degenerates to a rigid algebra it can be easily
concluded that the rigid algebras are located on the highest vertices of this representation scheme.
Since any n-dimensional algebra degenerates to the abelian an the lowest edges end on an . For some
examples of the descriptions of varieties of algebras by means of the degeneration graphs we refer to
the papers [1,4,6] and others.

In [3] Gorbatsevich describes the nearest-neighbor algebras to an (algebras of level one) in the
degeneration graphs of commutative and skew-symmetric algebras.

If the ground field F is the field of complex numbers C, it is known from [4] that the closures
of orbits with respect to the Zariski and Euclidean topologies coincide. Therefore, the fact that λ ∈
Orb(μ) can be reformulated as follows:

∃ϕ : (0,1] → GLn
(
C(t)

)
, t �→ gt such that lim

t→0
gt ∗ λ = μ,

where ϕ is analytic and semialgebraic mapping [2].
In this paper we ameliorate the result of the paper [3] correcting some non-accuracies made in it

and give a complete list of algebras level one in the variety of finite-dimensional complex algebras.

Definition 1.1. An algebra λ is said to degenerate to an algebra μ, if Orb(μ) lies in the Zariski closure
of Orb(λ). We denote this by λ → μ.

The degeneration λ → μ is called a direct degeneration if there is no chain of non-trivial degenera-
tions of the form: λ → ν → μ.

Definition 1.2. A level of an algebra λ is the maximum length of chain of direct degenerations. We
denote the level of an algebra λ by levn(λ).

Consider the following n-dimensional algebras with the table of multiplications on a basis:
e1, e2, . . . , en:

p±
n : e1ei = ei, eie1 = ±ei, i � 2,

n±
3 : e1e2 = e3, e2e1 = ±e3.

Here is main result of [3] which we have mentioned above.

Theorem 1.3. Let λ be an n-dimensional algebra. Then:

1. If λ is skew-commutative, then levn(λ) = 1 if and only if it is isomorphic to p−
n or to the algebra n−

3 ⊕an−3
with n � 3. In particular, the λ is a Lie algebra;

2. If λ is commutative, then levn(λ) = 1 if and only if it is isomorphic to p+
n or to the algebra n+

3 ⊕ an−3 for
n � 3. In particular, the λ is a Jordan algebra.

2. Main result

In this section we describe all complex finite-dimensional algebras of level one.
Consider the following algebras

λ2: e1e1 = e2,

νn(α): e1e1 = e1, e1ei = αei, eie1 = (1 − α)ei, 2 � i � n.

Let us first give some counter-arguments to Theorem 1.3.
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Proposition 2.1. The algebras p+
n and n+

3 ⊕ an−3 are not algebras of level one, i.e. there are the following
degenerations through λ2 ⊕ an−2:

p+
n → λ2 ⊕ an−2 → an and n+

3 ⊕ an−3 → λ2 ⊕ an−2 → an.

Proof. The first degeneration is given by the family of transformations gt :

gt(e1) = t−1e1 − t−2

2
e2, gt(e2) = t−2

2
e2, gt(ei) = t−2ei, 3 � i � n.

The second one is given by ft as follows:

ft(e1) = t−1e1 − t−2e3, ft(e2) = t−2e3,

ft(e3) = t−2

2
e2, ft(ei) = ei, 4 � i � n. �

To prove the main theorem we give the following subsidiary result.

Proposition 2.2. Any n-dimensional (n � 3) non-abelian algebra degenerates to one of the following algebras

p−
n , n−

3 ⊕ an−3, λ2 ⊕ an−2, νn(α), α ∈ C.

Proof. Let A be an n-dimensional non-abelian algebra. The case when the algebra A is skew-
symmetric the result has been given in [5] (see Theorem 5.2). Therefore, we assume that the algebra A
is not skew-symmetric. Hence always there exists an element x of A such that xx 	= 0.

Case 1. Assume that there exists an element x of A such that xx /∈ 〈x〉. Then we can choose the basis
e1 = x, e2 = xx, . . . , en . The degeneration A → λ2 ⊕ an−2 is realized by the family gt :

gt(e1) = t−1e1, gt(ei) = t−2ei, 2 � i � n.

Case 2. Let xx ∈ 〈x〉 for all x ∈ A. Then for any x, y ∈ A we have

(x + y)(x + y) = xx + xy + yx + yy ∈ 〈x + y〉.
Therefore, xy + yx ∈ 〈x, y〉.

If there exist elements x and y such that xy /∈ 〈x, y〉, then we choose the basis {e1 = x, e2 = y, e3 =
xy, . . . , en} of the algebra A. The following family of transformations

gt : gt(e1) = t−1e1, gt(e2) = t−1e2, gt(ei) = t−2ei, 3 � i � n

gives the degeneration A → n−
3 ⊕ an−3.

Now we consider the case when xy ∈ 〈x, y〉 for all x, y ∈ A. Then for a basis {e1, e2, e3, . . . , en} of
A we have eiei = αiei , 1 � i � n. Taking into account that the algebra A is not skew-symmetric, we
can suppose α1 	= 0. Also without loss of generality we can assume that αi 	= 0, 1 � i � k and αi = 0,
k + 1 � i � n. By scaling of basic elements we get eiei = ei , 1 � i � k, αi = 0, k + 1 � i � n.

The inclusion of the following products

(e1 ± ei)(e1 ± ei) = e1 ± e1ei ± eie1 + ei ∈ 〈e1 ± ei〉,
implies e1ei + eie1 = e1 + ei , 1 � i � k.

Similarly, one obtains

e1ei + eie1 = ei, k + 1 � i � n.
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Making the change of basis

e′
i = ei − e1, 2 � i � k, e′

i = ei, k + 1 � i � n,

we get the following products

e1e1 = e1, eiei = 0, 2 � i � n,

e1ei = αiei + βie1, eie1 = (1 − αi)ei − βie1, 2 � i � n,

for some αi, βi ∈ C.
The equality

e1(ei + e j) = (α j − αi)e j + αi(ei + e j) + (βi + β j)e1

and e1(ei + e j) ∈ 〈e1, ei + e j〉 imply αi = α, 2 � i � n.
Then the degeneration A → νn(α) is realized by using the family

gt : gt(e1) = e1, gt(ei) = t−1ei, 2 � i � n,

which completes the proof of proposition. �
Theorem 2.3. An n-dimensional (n � 3) algebra is algebra of level one if and only if it is isomorphic to one of
the following algebras:

p−
n , n−

3 ⊕ an−3, λ2 ⊕ an−2, νn(α), α ∈ C.

Proof. Due to Proposition 2.2 it is sufficient to prove that these four algebras do not degenerate to

each other. From [5, Theorem 5.2] we have Orb(p−
n ) = {p−

n ,an} and Orb(n−
3 ⊕ an−3) = {n−

3 ⊕ an−3,an}.
Therefore, we only need to prove that Orb(λ2 ⊕ an−2) = {λ2 ⊕ an−2,an} and Orb(νn(α)) = {νn(α),an}.

Since λ2 ⊕ an−2 is commutative, p−
n and n−

3 ⊕ an−3 are skew-symmetric algebras, we obtain

p−
n ,n−

3 ⊕ an−3 /∈ Orb(λ2 ⊕ an−2). Moreover, the algebra λ2 ⊕ an−2 is nilpotent, but νn(α) is not nilpo-

tent. Therefore, Orb(λ2 ⊕ an−2) = {λ2 ⊕ an−2,an}.
To prove that Orb(νn(α)) = {νn(α),an}, we make use the following fact from [1]: if λ degenerates

μ then dim Der(λ) < dim Der(μ). Computing the dimensions of the derivation algebras as follows

dim
(
Der

(
νn(α)

)) = n2 − n, dim
(
Der(λ2 ⊕ an−2)

) = n2 − 2n + 2,

dim
(
Der

(
p−

n

)) = n2 − n, dim
(
Der

(
n−

3 ⊕ an−3
)) = n2 − 3n + 6,

we conclude that νn(α) is an algebra of level one. �
It is observed that the list of two-dimensional algebras of level one is as follows

p−
2 , λ2, ν2(α).
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