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invertible Leibniz-derivation of Definition 3.4. Moreover, the result that a solvable
radical of a Lie algebra is invariant with respect to a Leibniz-derivation was extended
to the case of Leibniz algebras.
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1 Introduction

In 1955, Jacobson [11] proved that a Lie algebra over a field of characteristic zero
admitting a non-singular (invertible) derivation is nilpotent. The problem of whether
the inverse of this statement is correct remained open until the work of [9], where
an example of a nilpotent Lie algebra whose derivations are nilpotent (and hence,
singular), was constructed. Such types of Lie algebras are called “characteristically
nilpotent Lie algebras”.

The study of derivations of Lie algebras leads to the appearance of natural
generalization—pre-derivations of Lie algebras [15]. In [2], it is proved that Jacob-
son’s result is also true in terms of pre-derivations. Similar to the example of Dixmier
and Lister [9], several examples of nilpotent Lie algebras whose pre-derivations
are nilpotent were presented in [2, 4]. Such Lie algebras are called “strongly
nilpotent” [4].

In paper [16], a generalized notion of derivations and pre-derivation of Lie
algebras is defined as a Leibniz-derivation of order k. In fact, a Leibniz-derivation
is a derivation of a Leibniz k-algebra constructed by Lie algebra [6].

In the section below, we present the characterization of nilpotency for Lie algebras
in terms of Leibniz-derivations.

Theorem 1.1 [16] A Lie algebra over a f ield of characteristic zero is nilpotent if and
only if it has an invertible Leibniz-derivation.

Leibniz algebras were introduced by Loday in [13, 14] as a non-antisymmetric
version of Lie algebras. Many results of Lie algebras are extended to the case of
Leibniz algebras. Since the study of derivations and automorphisms of a Lie algebra
plays an essential role in the structure theory, the natural question arises as to
whether the corresponding results for Lie algebras can be extended to more general
objects.

In [12], it is proved that a finite dimensional complex Leibniz algebra admit-
ting a non-singular derivation is nilpotent. Moreover, it was shown that (similar
to the case of Lie algebras) the inverse of this statement does not hold, and
the notion of characteristically nilpotent Lie algebra can be extended for Leibniz
algebras [17].

In this paper, we show that if we define Leibniz-derivations for Leibniz algebra
as in [16], then Theorem 1.1 does not hold. In order to avoid confusion, we need to
modify the notion of Leibniz-derivation for Leibniz algebras.

Recall that in the definition of Leibniz-derivation of order k for Lie algebras, the
k-ary bracket is defined as multiplication of k elements on the left side. For the case
of Leibniz algebras, we propose the definition of Leibniz-derivation of order k as
k-ary bracket on the right side. Due to anti-commutativity of multiplication in Lie
algebras, this definition agrees with the case of Lie algebras.

Note that a vector space equipped with right-sided k-ary multiplication is not a
Leibniz k-algebra as defined in [6]. For a Leibniz-derivation of Leibniz algebra, we
prove the analogue of Theorem 1.1 for finite dimensional Leibniz algebras over a
field of characteristic zero.

Throughout the paper, all spaces and algebras are assumed finite dimensional.
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2 Preliminaries

In this section, we present some known facts about Leibniz algebras and Leibniz
n-algebras.

Definition 2.1 A vector space L over a field F with a binary operation [−, −] is a
(right) Leibniz algebra, if for any x, y, z ∈ L the so-called Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]
holds.

Every Lie algebra is a Leibniz algebra, but the bracket in a Leibniz algebra does
not need to be skew-symmetric.

For a Leibniz algebra L, consider the following central lower and derived se-
quences:

L1 = L, Lk+1 = [
Lk, L1] , k ≥ 1,

L[1] = 1, L[s+1] = [
L[s], L[s]] , s ≥ 1.

Definition 2.2 A Leibniz algebra L is called nilpotent (respectively, solvable), if
there exists p ∈ N (q ∈ N) such that Lp = 0 (respectively, L[q] = 0).

Levi’s theorem, which has been proven for left Leibniz algebras in [3], is also true
for right Leibniz algebras.

Theorem 2.3 (Levi’s Theorem) Let L be a Leibniz algebra over a f ield of character-
istic zero and R be its solvable radical. Then there exists a semisimple subalgebra Lie
S of L, such that L = S+̇R.

The following theorem from linear algebra characterizes the decomposition of a
vector space into the direct sum of characteristic subspaces.

Theorem 2.4 [8] Let A be a linear transformation of the vector space V. Then V
decomposes into the direct sum of characteristic subspaces V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλk

with respect to A, where Vλi = {x ∈ V | (A − λi I)k(x) = 0 for some k ∈ N} and λi, 1 ≤
i ≤ k, are eigenvalues of A.

In Leibniz algebras, a derivation is defined as follows

Definition 2.5 A linear transformation d of a Leibniz algebra L is a derivation if for
any x, y ∈ L

d([x, y]) = [d(x), y] + [x, d(y)].

Consider that for an arbitrary element x ∈ L the operator of right multiplica-
tion Rx : L → L, defined by Rx(z) = [z, x]. Operators of right multiplication are
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derivations of the Leibniz algebra L. The set R(L) = {Rx | x ∈ L} is a Lie algebra
with respect to the commutator, and the following identity holds:

Rx Ry − Ry Rx = R[y,x]. (2.1)

A subset S of an associative algebra A over a field F is called a weakly closed subset
if for every pair (a, b)∈ S×S there is an element γ(a,b) ∈ F such that ab +γ(a,b)ba∈ S.

We will need the following result concerning weekly closed sets

Theorem 2.6 [11] Let S be a weakly closed subset of the associative algebra A of linear
transformations of a vector space V over F. Assume that every W ∈ S is nilpotent, that
is, Wk = 0 for some positive integer k. Then the enveloping associative algebra S∗ of S
is nilpotent.

The classical Engel’s theorem for Lie algebras has the following analogue for
Leibniz algebras.

Theorem 2.7 [1] A Leibniz algebra L is nilpotent if and only if Rx is nilpotent for any
x ∈ L.

The following theorem generalizes Jacobson’s theorem to Leibniz algebras.

Theorem 2.8 [12] Let L be a complex Leibniz algebra that admits a non-singular
derivation. Then L is nilpotent.

The next example presents n-dimensional Leibniz algebra possessing only nilpo-
tent derivations.

Example 2.9 Let L be an n-dimensional Leibniz algebra and let {e1, e2, . . . , en} be a
basis of L with the following table of multiplication:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[e1, e1] = e3,

[ei, e1] = ei+1, 2 ≤ i ≤ n − 1,

[e1, e2] = e4,

[ei, e2] = ei+2, 2 ≤ i ≤ n − 2,

(omitted products are equal to zero).
Using the derivation property, it is easy to see that every derivation of L has the

following matrix form:
⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

0 0 a3 a4 a5 . . . an−1 an

0 0 a3 a4 a5 . . . an−1 b n

0 0 0 a3 a4 . . . an−2 an−1

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 a3

0 0 0 0 0 . . . 0 0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

Thus, every derivation of L is nilpotent, i.e., L is characteristically nilpotent.
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Let us give the definition of Leibniz n-algebras.

Definition 2.10 [6] A vector space L with an n-ary multiplication [−, −, ..., −] :
L⊗n → L is a Leibniz n-algebra if it satisfies the following identity:

[[x1, x2, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , xi−1, [xi, y2, . . . , yn], xi+1, . . . , xn]. (2.2)

Let L be a Leibniz algebra with the product [−, −]. Then, the vector space L can
be equipped with a Leibniz n-algebra structure with the following product:

[x1, x2, . . . , xn] = [x1, [x2, . . . , [xn−1, xn]]].

Definition 2.11 A derivation of a Leibniz n-algebra L is a K-linear map d : L → L
satisfying

d([x1, x2, . . . , xn]) =
n∑

i=1

[x1, . . . , d(xi), . . . , xn].

The notion of Leibniz-derivation of Lie algebra was introduced in [16] and it
generalizes the notions of derivation and pre-derivation of Lie algebra.

Definition 2.12 A Leibniz-derivation of order n for a Lie algebra G is an endomor-
phism P of G satisfying the identity

P([x1, [x2, . . . , [xn−1, xn]]]) = [P(x1), [x2, . . . , [xn−1, xn]]]
+ [x1, [P(x2), . . . , [xn−1, xn]]] + . . .

+ [x1, [x2, . . . , [xn−1, P(xn)]]]
for every x1, x2, . . . , xn ∈ G.

In other words, a Leibniz-derivation of order n for a Lie algebra G is a derivation
of G viewed as a Leibniz n-algebra.

3 Leibniz-Derivation of Leibniz Algebras

The following example shows that Definition 2.12 is not substantial for the case of
Leibniz algebras.

Example 3.1 Let R be an (n + 1)-dimensional solvable Leibniz algebra and
{e1, e2, . . . , en, en+1} be a basis of R with the table of multiplication given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 2 ≤ i ≤ n − 1,

[e1, en+1] = e2 +
n−1∑

i=4
αiei, [e2, en+1] = e2 +

n−1∑

i=4
αiei,

[ei, en+1] = ei +
n∑

j=i+2
α j−i+2ei, 3 ≤ i ≤ n,
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It is easy to see that [R, [R, R]] = 0. For the identity map, d, we have

0 = d([x, [y, z]]) = [d(x), [y, z]] + [x, [d(y), z]] + [x, [y, d(z)]] = 0.

Therefore, the invertible map d satisfies the condition of Definition 2.12, but the
Leibniz algebra R is not nilpotent, i.e., the analogue of Theorem 1.1 for Leibniz
algebras is not true.

Remark 3.2 Example 3.1 can be extended for any non-nilpotent solvable
Leibniz algebra L such that L2 lies in the right annihilator of L.

Let us introduce n-ary multiplication as follows

[x1, x2, . . . , xn]r = [[[x1, x2], x3] . . . , xn]. (3.1)

The next example shows that, in general, a vector space equipped with defined
n-ary multiplication [x1, x2, . . . , xn]r is not a Leibniz n-algebra.

Example 3.3 Let R be a solvable Leibniz algebra and let {e1, e2, . . . , en, x} be a basis
of R such that multiplication table of R in this basis has the following form [7]:

⎧
⎪⎨

⎪⎩

[ei, e1] = ei+1, 1 ≤ i ≤ n − 1,

[x, e1] = e1,

[ei, x] = −iei, 1 ≤ i ≤ n.

It is not difficult to check that the vector space R with k-ary multiplication
[x1, x2, . . . , xk]r does not define Leibniz k-algebra structure. Indeed, we have

[[e1, e1, . . . , e1]r, x, . . . , x]r = [. . . [[[. . . [[e1, e1], e1], . . . , e1︸ ︷︷ ︸
k−times

, ] x], x], . . . , x︸ ︷︷ ︸
k−1−times

]

= [. . . [[ek, x], x], . . . , x︸ ︷︷ ︸
k−1−times

] = (−k)k−1ek.

On the other hand,

k∑

i=1

[e1, . . . , e1, [e1, x, . . . , x]r︸ ︷︷ ︸
i−th

, e1, . . . , e1]r =
k∑

i=1

[e1, . . . , e1, (−1)k−1e1︸ ︷︷ ︸
i−th

, e1, . . . , e1]r

= (−1)k−1
k∑

i=1

[. . . [[e1, e1], e1], . . . , e1︸ ︷︷ ︸
k−times

]

= (−1)k−1
k∑

i=1

ek = (−1)k−1kek.

Hence, identity (2.2) does not hold for k ≥ 3.
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Now we define the notion of Leibniz-derivation for Leibniz algebras.

Definition 3.4 A Leibniz-derivation of order n ∈ N for a Leibniz algebra L is a K-
linear map d : L → L satisfying

d([x1, x2, . . . , xn]r) =
n∑

i=1

[x1, . . . , d(xi), . . . , xn]r.

Proposition 3.5 For Lie algebras, Def inition 3.4 agrees with Definition 2.12.

Proof If we let L be a Lie algebra, then we have

P([x1, [x2, . . . , [xn−1, xn]]]) = (−1)n P([[[xn, xn−1], . . . , x2], x1])
= (−1)n P([xn, xn−1, . . . , x1]r).

On the other hand,

[P(x1), [x2, . . . , [xn−1, xn]]] + [x1, [P(x2), . . . , [xn−1, xn]]]
+ · · · + [x1, [x2, . . . , [xn−1, P(xn)]]]

= (−1)n[[[xn, xn−1], . . . , x2], P(x1)] + (−1)n[[[xn, xn−1], . . . , P(x2)], x1]
+ · · · + (−1)n[[[P(xn), xn−1], . . . , x2], x1]

= (−1)n ([xn, xn−1, . . . , x2, P(x1)]r + [xn, xn−1, . . . , P(x2), x1]r

+ · · · + [P(xn), xn−1, . . . , x2, x1]r)

= (−1)n
n∑

i=1

[xn, . . . , P(xi), . . . , x1]r.

This implies the equality

P([x1, [x2, . . . , [xn−1, xn]]]) = [P(x1), [x2, . . . , [xn−1, xn]]]
+ [x1, [P(x2), . . . , [xn−1, xn]]] + . . .

+ [x1, [x2, . . . , [xn−1, P(xn)]]],
which is equivalent to

P([xn, xn−1, . . . , x1]r) =
n∑

i=1

[xn, . . . , P(xi), . . . , x1]r.

Relabeling xi with xn+1−i for 1 ≤ i ≤ n we complete the proof of the proposition.
	


Let LDern(L) denote the set of all Leibniz-derivations of order n for a Leibniz
algebra L and let LDer(L) be the set of all Leibniz-derivations, i.e., LDer(L) =⋃

n∈N
LDern(L).

Note that a Leibniz derivation of order 2 is a derivation. Moreover, any derivation
is a Leibniz-derivation of any order n. Thus, the order of a Leibniz-derivation is not
unique.
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Lemma 3.6 The following statements are true

(1) If s, t ∈ N and s|t, then LDers+1(L) ⊂ LDert+1(L);
(2) for any k, l ∈ N, LDerk(L) ∩ LDerl(L) ⊂ LDerk+l−1.

Proof Since Definition 3.4 for the Leibniz-derivation of order n coincides with the
Leibniz-derivation of order n − 1, defined in [16], the proof of the lemma can be
carried out similarly to the proof of Lemma 1 in [16]. 	


Similar to the case of Lie algebras, we call a Leibniz-derivation of order 3 a pre-
derivation of Leibniz algebra. A nilpotent Leibniz algebra is called strongly nilpotent
if all its Leibniz pre-derivations are nilpotent.

Note that a strongly nilpotent Leibniz algebra is characteristically nilpotent, but
the inverse is not true in general.

Example 3.7 Any pre-derivation of the characteristically nilpotent Leibniz algebra
in Example 2.9 with n = 6 has the matrix form:

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

a1 a1 a3 a4 a5 a6

0 2a1 a3 a4 b 5 b 6

0 0 3a1 −a1 + a3 c5 c6

0 0 0 4a1 2a1 + a3 a4

0 0 0 0 5a1 a1 + a3

0 0 0 0 0 6a1

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

Thus, this Leibniz algebra is not strongly nilpotent.

Proposition 3.8 The Leibniz algebra L in Example 2.9 is strongly nilpotent if n > 6.

Proof Let d : L → L be a pre-derivation of L.

Put

d(e1) =
n∑

i=1

aiei, d(e2) =
n∑

i=1

biei, d(e3) =
n∑

i=1

ciei.

Consider the property of pre-derivation

d(e4) = d([e1, e1, e1]r) = (3a1 + a2)e4 + (a3 + 2a2)e5 +
n−2∑

i=4

aiei+2.

On the other hand,

d(e4) = d([e2, e1, e1]r) = (2a1 + b 1 + b 2)e4 + (b 3 + 2a2)e5 +
n−2∑

i=4

biei+2.

Comparing coefficients of basis elements, we have

b 1 + b 2 = a1 + a2, bi = ai, 3 ≤ i ≤ n − 2.

The equality d([e1, e1, e3]r) = 0 implies 0 = c1e4 + c2e5, hence c1 = c2 = 0.
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The chain of equalities

b 1e4 + (2a1 + a2 + b 2)e5 + (a3 + a2)e6 +
n−3∑

i=4

aiei+3

= d([e1, e2, e1]r) = d(e5) = d([e3, e1, e1]r)

= (2a1 + c3)e5 + (2a2 + c4)e6 +
n−2∑

i=5

ciei+2.

deduce

b 1 = 0, c3 = a2 + b 2, c4 = a3 − a2, ci = ai−1, 4 ≤ i ≤ n − 2.

From the equalities

(3a1 + 3a2)e6 +
n−4∑

i=3

aiei+4 = d([e1, e2, e2]r) = d(e6)

= d([e4, e1, e1]r)

= (5a1 + a2)e6 + (4a2 + a3)e7 +
n−4∑

i=4

aiei+4

we get a1 = a2 = 0.

Since b 2 = a1 + a2 and c3 = a2 + b 2, we have b 2 = c3 = 0.

Thus we obtain

d(e1) =
n∑

i=3

aiei, d(e2) =
n−2∑

i=3

aiei + b n−1en−1 + b nen,

d(e3) =
n−3∑

i=3

aiei+1 + cn−1en−1 + cnen.

Finally, from the expression d([ei−2, e1, e1]r), we derive

d(ei) = a3ei+1 + a4ei+2 + · · · + an+2− jen, i ≥ 4

which completes the proof of the proposition. 	


Following the proofs of lemmas in [10] and [5] for derivations of Lie and Leibniz
n-algebras, respectively, we get the following statement for Leibniz-derivations of
order n of Leibniz algebras.

Lemma 3.9 For a Leibniz-derivation d : L → L of order n of a Leibniz algebra L
over a f ield of characteristic zero, the following formula holds for any k ∈ N:

dk([x1, . . . , xn]r) =
∑

i1+i2+···+in=k

k!
i1!i2! . . . in!

[
di1(x1), di2(x2), . . . , din(xn)

]
r . (3.2)
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4 Nilpotent Leibniz Algebras

Starting with a Leibniz algebra L, we call its underlying vector space equipped with
multiplication [−, −, . . . ,−]r as Eq. 3.1 an n-ary algebra, and denote it by Ln(L). A
subalgebra I of the Leibniz algebra L is called an n-ideal of L or an ideal of Ln(L),

if it satisfies

[L, . . . , I︸︷︷︸
i−th place

, . . . , L]r ⊆ I for any i (1 ≤ i ≤ n).

Let M be any Leibniz subalgebra of L. Consider the following sequences:

L1
n(M) = M, Lk+1

n (M) = [
Lk

n(M), M, . . . , M
]

r , k ≥ 1,

L[1]
n (M) = M, L[s+1]

n (M) = [
L[s]

n (M),L[s]
n (M) . . . ,L[s]

n (M)
]

r , s ≥ 1.

Definition 4.1 A Leibniz algebra L is called n-nilpotent (n-solvable) if there exists a
natural number p ∈ N (q ∈ N) such that Lp

n (L) = 0 (L[q]
n (L) = 0).

Lemma 4.2 Let M be an ideal of L. The following inclusions are true

L[k]
n (M) ⊆ M[k], Lk

n(M) ⊆ Mk.

Proof It is easy to check that Mk and M[k] are also ideals of L for any k. We shall
prove the first embedding by induction on k for any n.

If k = 2, then

L[2]
n (M)=[M, M, M, . . . , M]r =[[[M, M], M], . . . , M]=[[

M[2], M
]
, . . . , M

] ⊆ M[2].

Suppose that the statement holds for some k and we will prove it for k + 1.

L[k+1]
n (M) = [[[

L[k]
n (M),L[k]

n (M)
]
,L[k]

n (M)
]
, . . . ,L[k]

n (M)
]

⊆ [[[
M[k], M[k]] , M[k]] , . . . , M[k]]

= [[
M[k+1], M[k]] , . . . , M[k]] ⊆ M[k+1].

The second inclusion is established in a similar way. 	


Lemma 4.3 M[tk+1] ⊆ L[k+1]
n (M), where k ∈ N and t is a natural number such that

2t ≥ n.

Proof Since M[p] ⊆ M[p+q] for any p, q ∈ N, it is sufficient to prove embedding for
the minimal t such that 2t ≥ n.
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We shall use induction. If n = 3, then t = 2.

For k = 1, we have

M[3] = [
M[2], M[2]] = [

M[2],
[
M[1], M[1]]]

⊆ [[
M[2], M[1]] , M[1]] ⊆ [

M[1], M[1], M[1]]
r ⊆ L[2]

3 (M).

Suppose that the statement holds for some k and we will prove it for k + 1.

M[2(k+1)+1] = M[2k+1+2] = [[
M[2k+1], M[2k+1]] ,

[
M[2k+1], M[2k+1]]]

⊆ [[
M[2k+1], M[2k+1]] , M[2k+1]]

⊆
[
L[k+1]

3 (M),L[k+1]
3 (M),L[k+1]

3 (M)
]

r
= L[k+2]

3 (M).

Let us prove the statement for any n.

Since 2t ≥ n for k = 1 we get

M[t+1] ⊆ M2t = [[M[1], M[1]], . . . , M[1]]︸ ︷︷ ︸
2t−times

⊆ [[M[1], M[1]], . . . , M[1]]︸ ︷︷ ︸
n−times

= L[2]
n (M).

The following chain equalities and inclusions

M[t(k+1)+1] = M[tk+1+t] = (M[tk+1])[t+1] ⊆ (M[tk+1])2t

= [[[M[tk+1], M[tk+1]], . . . , M[tk+1]]︸ ︷︷ ︸
2t−times

⊆ [[M[tk+1], M[tk+1]], . . . , M[tk+1]]︸ ︷︷ ︸
n−times

⊆ [[L[k+1]
n (M),L[k+1]

n (M)], . . . ,L[k+1]
n (M)]

︸ ︷︷ ︸
n−times

= L[k+2]
n (M)

complete the proof of the lemma. 	


Further, we shall need the following lemma.

Lemma 4.4 Mnk−k+1 = Lk+1
n (M).

Proof The proof goes again by induction on k for any n.

If k = 1, then

Mn = [. . . [[M, M], M], . . . , M]︸ ︷︷ ︸
n−times

= [M, M, . . . , M]r = L2
n(M).
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Applying induction in the equalities

Mn(k+1)−k−1+1 = Mnk−k+1+n−1 = [. . . [[Mnk−k+1, M], M], . . . , M]︸ ︷︷ ︸
n−1−times

= [Mnk−k+1, M, . . . , M]r = [Lk+1
n (M), M, . . . , M]r = Lk+2

n (M)

we complete the proof of the lemma. 	


Let us denote by

R solvable radical of L, i.e., the maximal solvable ideal of the Leibniz algebra L;
Rn n-solvable radical of L, i.e., the maximal n-solvable ideal of the n-ary algebra

Ln(L);
N nilradical of L, i.e., the maximal nilpotent ideal of the Leibniz algebra L;
Nn n-nilradical of L, i.e., the maximal n-nilpotent ideal of the n-ary algebra Ln(L).

Proposition 4.5 For a Leibniz algebra L, we have R = Rn.

Proof It is obvious that the ideal R of L is also ideal of the n-ary algebra Ln(L).

Lemma 4.2 implies that any solvable ideal of the Leibniz algebra L is also n-solvable.
Therefore, it is sufficient to prove the inclusion Rn ⊆ R.

Since Rn is an n-solvable radical of L, so Rn is a subalgebra of L and

[L, . . . , Rn︸︷︷︸
i−th

, . . . , L]r ⊆ Rn for any i (1 ≤ i ≤ n).

From Lemma 4.3, it follows that Rn is a solvable subalgebra of the Leibniz algebra
L. Thus, we need to prove that Rn is an ideal of L, i.e., [L, Rn], [Rn, L] ⊆ L.

According to Theorem 2.3, we can write L = S ⊕ R, where S is a simple Lie algebra,
R is a solvable ideal of L. Let π : L → S be the natural quotient map.

Since π is a morphism of L, we get

π([L, L, . . . , L, Rn]r) = π([[[[L, L], L], . . . , L], Rn])
= [[[[π(L), π(L)], π(L)], . . . , π(L)], π(Rn)]
= [[[[S, S], S], . . . , S], π(Rn)] = [S, π(Rn)].

On the other hand, from [L, L, . . . , L, Rn]r ⊆ Rn we derive

π([L, L, . . . , L, Rn]r) ⊆ π(Rn).

Hence, [S, π(Rn)] ⊆ π(Rn). Taking into account that S is a Lie algebra we obtain
[π(Rn), S] ⊆ π(Rn). Therefore, π(Rn) is an ideal of S. Since Rn is an n-solvable ideal
of L, π(Rn) is an n-solvable ideal of the Lie algebra S, consequently π(Rn) is a
solvable ideal of S.

Due to semisimplicity of S, we get π(Rn) = 0, which implies Rn ⊆ R. 	
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Lemma 4.6 Let I be an ideal of the Leibniz algebra L and d ∈ LDern(L) a Leibniz-
derivation for some n ∈ N. Then

L[k]
n (d(I)) ⊆ I + dnk−1 (

L[k]
n (I)

)

for all k ∈ N.

Proof Evidently, d(I) ⊆ I + d(I) holds. For k = 2, using Eq. 3.2, we have

L[2]
n (d(I)) = [d(I), d(I), . . . , d(I)]r ⊆ d([I, I, . . . , I]r)

+
∑

i1 + i2 + · · · + in = n
∃i j = 0

n!
i1!i2! . . . in!

× [
di1(I), . . . , di j−1(I), I, di j+1(I), . . . , din(I)

]
r

⊆ I + dn (
L[2]

n (I)
)
.

Assume that L[k]
n (d(I)) ⊆ I + dnk−1

(L[k]
n (I)). Again using Eq. 3.2, we verify the

inclusion for k + 1 :
L[k+1]

n (d(I)) = [L[k]
n (d(I)),L[k]

n (d(I)), . . . ,L[k]
n (d(I))]r

⊆ [I + dnk−1
(L[k]

n (I)), I + dnk−1
(L[k]

n (I)), . . . , I + dnk−1
(L[k]

n (I))]r

⊆ I + dnk
([L[k]

n (I),L[k]
n (I), . . . ,L[k]

n (I)]r)

⊆ I + dnk
(L[k+1]

n (I))).

	


Theorem 4.7 Let R be the solvable radical of a Leibniz algebra L over a f ield of
characteristic zero. Then d(R) ⊆ R for any d ∈ LDern(L).

Proof Let d be a Leibniz-derivation of order n. Due to Proposition 4.5, R = Rn, so
it is enough to prove the assertion of the Theorem for Rn.

Since Rn is a n-solvable radical, there exists s ∈ N such that L[s]
n (Rn) = 0. Then,

by Lemma 4.6, L[s]
n (d(Rn)) ⊆ Rn + dns−1

(L[s]
n (Rn)) = Rn. Thus, we have L[s]

n (Rn +
d(Rn)) ⊆ Rn.

Further,

L[2s−1]
n (Rn + d(Rn)) ⊆ L[s]

n

(
L[s]

n (Rn + d(Rn))
) ⊆ L[s]

n (Rn) = 0.

The n-ideal property of Rn + d(Rn) follows from the following equalities:

[l1, . . . , li + d(li), . . . , ln]r = [l1, . . . , li, . . . , ln]r + [l1, . . . , d(li), . . . , ln]r

= [l1, . . . , li, . . . , ln]r + d([l1, . . . , li, . . . , ln]r)

−
n∑

j=1, j�=i

[l1, . . . , d(l j), . . . , ln]r.
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Hence, Rn + d(Rn) is an n-solvable ideal of the Leibniz algebra L. Since Rn is the
n-solvable radical of L, it follows that Rn + d(Rn) ⊆ Rn, therefore d(Rn) ⊆ Rn. 	


Lemma 4.8 Let I be an ideal of the Leibniz algebra L and d ∈ LDern(L) a Leibniz-
derivation for some n ∈ N. Then

Lk
n(d(I)) ⊆ I + dkn−k+1

(
Lk

n(I)
)

for all k ∈ N.

Proof For k = 1 the assertion of the lemma is obvious. Let k = 2, then using the
formula 3.2 we have

L2
n(d(I)) = [d(I), d(I), . . . , d(I)]r

⊆ d([I, I, . . . , I]r) +
∑

i1 + i2 + · · · + in = n
∃i j = 0

n!
i1!i2! . . . in!

× [
di1(I), . . . , di j−1(I), I, di j−1(I), . . . , din(I)

]
r

⊆ I + dn (
L2

n(I)
)
.

Assume that Lk
n(d(I)) ⊆ I + dkn−k+1(Lk

n(I)). Applying the formula 3.2, we prove
the inclusion for k + 1 :

Lk+1
n (d(I)) = [

Lk
n(d(I)), (d(I)), . . . , (d(I))

]
r

⊆ [
I + dkn−k+1(Lk

n(I)), d(I), . . . , d(I)
]

r

⊆ [
I + dkn−k+1+n−1 ([

L[k]
n (I), I, . . . , I

]
r

)

⊆ I + d(k+1)n−k (
Lk+1

n (I))
)
.

	


The invariant property of nilradical of a Leibniz algebra under a Leibniz-
derivation is presented in the following theorem.

Theorem 4.9 Let N be the nilradical of a Leibniz algebra L over a f ield of character-
istic zero. Then, d(N) ⊆ N for any d ∈ LDern(L).

Proof The proof is similar to the proof of Theorem 4.7. 	


The next result establishes the properties of weight spaces with respect to a
Leibniz-derivation of a Leibniz algebra.

Lemma 4.10 Let L be a complex Leibniz algebra with a given Leibniz-derivation d of
order n and L = Lα ⊕ Lβ ⊕ · · · ⊕ Lγ the decomposition of L into weight spaces with
respect to d (i.e. Lα = {x ∈ L : (d − α1)kx = 0 for some k}). Then

[Lα1 , Lα2 , . . . , Lαn ]r =
{

0 i f α1 + α2 + · · · + αn is not a root of d
Lα1+α2+···+αn i f α1 + α2 + · · · + αn is a root of d.



A Characterization of Nilpotent Leibniz Algebras 1503

Proof First observe that

(d − (α1 + α2 + · · · + αn) · 1)[x1, x2, . . . , xn]r

=
n∑

i=1

[x1, . . . , d(xi), . . . , xn]r −
n∑

i=1

[x1, . . . , αixi, . . . , xn]r

=
n∑

i=1

[x1, . . . , (d − αi · 1)xi, . . . , xn]r.

Similar to Lemma 3.9, by induction on k we get the following equality:

(d − (α1 + α2 + · · · + αn) · 1)k[x1, x2, . . . , xn]r

=
∑

i1+i2+···+in=k

k!
i1!i2! · · · in!

[
(d − α1 · 1)i1 x1, (d − α2 · 1)i2 x2, . . . , (d − αn · 1)in xn

]
r

(4.1)

for any xi ∈ Lαi .
Consider xi ∈ Lαi , 1 ≤ i ≤ n. Then there exist natural numbers ki such that (d −

αi · 1)ki(x) = 0. Taking k =
n∑

i=1
ki in Eq. 4.1, we have

(d − (α1 + α2 + · · · + αn) · 1)k[x1, x2, . . . , xn]r = 0

which completes the proof. 	


Similar to [16], we have the existence of an invertible Leibniz-derivation of
nilpotent Leibniz algebra.

Proposition 4.11 Every nilpotent Leibniz algebra with a nilindex equal to s has an
invertible Leibniz-derivation of order [ s

2 ] + 1.

Proof Let L be a Leibniz algebra with a nilindex equal to s and set q = [ s
2 ] + 1.

Consider the vector subspace W of L complementary to Lq, i.e. L = W + Lq. Define
the map P by the following way:

P(x) =
{

x if x ∈ W,

qx if x ∈ Lq.

It is easy to check that P is a Leibniz-derivation for L of order q. 	


Below we present one of the main theorems of the paper.

Theorem 4.12 Let L be a complex Leibniz algebra that admits an invertible Leibniz-
derivation. Then L is nilpotent.
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Proof Let d be an invertible Leibniz-derivation of order n of the Leibniz algebra L
and

L = Lρ1 ⊕ Lρ2 ⊕ · · · ⊕ Lρs

be the decomposition of L into characteristic spaces with respect to d.

Let α, β ∈ spec(d). Then, by Lemma 4.10, we have

[Lα, Lβ, Lβ, . . . , Lβ ]r︸ ︷︷ ︸
n−1−times

= [. . . [[Lα, Lβ ], Lβ, ] . . . , Lβ ]
︸ ︷︷ ︸

n−1−times

⊆ Lα+(n−1)β .

Considering k-times of the n-ary multiplication, we have

[. . . [[Lα, Lβ, Lβ, . . . , Lβ ]r︸ ︷︷ ︸
n−1−times

, Lβ, Lβ, . . . , Lβ ]r︸ ︷︷ ︸
n−1−times

, . . . , Lβ, Lβ, . . . , Lβ ]r︸ ︷︷ ︸
n−1−times︸ ︷︷ ︸

k−times

= [. . . [[Lα, Lβ ], Lβ, ] . . . , Lβ ]
︸ ︷︷ ︸

k(n−1)−times

⊆ Lα+k(n−1)β .

Since for sufficiently large k ∈ N we obtain α + k(n − 1)β �∈ spec(d), by Lemma
4.10 we obtain [. . . [[Lα, Lβ ], Lβ, ] . . . , Lβ ]

︸ ︷︷ ︸
k(n−1)−times

= 0.

Thus, any operator of right multiplication Rx : L → L, where x ∈ Lβ , is nilpotent
and, due to the fact that α, β were taken arbitrary, it follows that every operator from⋃k

i=1 R(Lρi) is nilpotent.
Now from identity (2.1) and Lemma 4.10 it follows that

⋃k
i=1 R(Lρi) is a weekly

closed set of an associative algebra End(L). Hence, by Theorem 2.6 it follows that
every operator from R(L) is nilpotent.

Hence, Rx is nilpotent for any x ∈ L. Now by Engel’s theorem (Theorem 2.7), we
conclude that L is nilpotent. 	


Finally, from the Theorem 4.12 and Proposition 4.11, we get the analogue of
Theorem 1.1 for Leibniz algebras.

Theorem 4.13 A Leibniz algebra over a f ield of characteristic zero is nilpotent if and
only if it has an invertible Leibniz-derivation.

References

1. Ayupov, Sh.A., Omirov, B.A.: On Leibniz algebras. In: Algebra and Operator Theory, Proceed-
ings of the Colloquium in Tashkent 1997, pp. 1–12. Kluwer, Boston (1998)

2. Bajo, I.: Lie algebras admitting non-singular prederivations. Indag. Math. 8(4), 433–437 (1997)
3. Barnes, D.W.: On Levi’s theorem for Leibniz algebras. Bull. Austr. Math. Soc. 86(2), 184–185

(2012). Online: arXiv:1109.1060v1
4. Burde, D.: Lie algebra prederivations and strongly nilpotent Lie algebras. Commun. Algebra

30(7), 3157–3175 (2002)
5. Camacho, L.M., Gasas, J.M., Gómez, J.R., Ladra, M., Omirov, B.A.: On nilpotent Leibniz

n-algebras. J. Algebra Appl. 11(3), 17 pp. (2012). doi:10.1142/S0219498812500624
6. Casas, J.M., Loday, J.-L., Pirashvili, T.: Leibniz n-algebras. Forum Math. 14, 189–207 (2002)

http://arXiv.org/abs/math/1109.1060v1
http://dx.doi.org/10.1142/S0219498812500624


A Characterization of Nilpotent Leibniz Algebras 1505

7. Casas, J.M., Ladra, M., Omirov, B.A., Karimjanov, I.K.: Classification of solvable Leibniz alge-
bras with null-filiform nilradical, 13 pp. (2012). arXiv:1202.5275v1 [math RA]

8. Curtis, M.L.: Abstract Linear Algebra. Springer, Berlin (1990)
9. Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras. Proc. Am. Math. Soc. 8, 155–158

(1957)
10. Filippov, V.T.: n-Lie algebras. Sib. Mat. Zh. 26(6), 126–140 (1985)
11. Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Am. Math. Soc.

6, 281–283 (1955)
12. Ladra, M., Rikhsiboev, I.M., Turdibaev, R.M.: Automorphisms and derivations of Leibniz alge-

bras, 12 pp. (2011). arxiv:1103.4721v1 [math RA]
13. Loday, J.-L.: Cyclic homology. In: Grundl. Math. Wiss. Bd., vol. 301. Springer, Berlin (1992)
14. Loday, J.-L.: Une version non-commutative des algèbres de Lie: les algèbres de Leibniz. Enseign.

Math. 39, 269–292 (1993)
15. Muller, D.: Isometries of bi-invariant pseudo-Remannian metrics on Lie groups. Geom. Dedic.

29, 65–96 (1989)
16. Moens, W.A.: A characterisation of nilpotent Lie algebras by invertible Leibniz-derivations.

Commun. Algebra 15 pp. (2012, to appear). arxiv:1011.6186v1 [math RA]
17. Omirov, B.A.: On derivations of filiform Leibniz algebras. Math. Notes 77(5–6), 677–685 (2005)

http://arXiv.org/abs/math/1202.5275v1
http://arXiv.org/abs/math/1103.4721v1
http://arXiv.org/abs/math/1011.6186v1

	A Characterization of Nilpotent Leibniz Algebras
	Abstract
	Introduction
	Preliminaries
	Leibniz-Derivation of Leibniz Algebras
	Nilpotent Leibniz Algebras
	References


