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On Leibniz algebras with only inner derivations
Khudoyberdiyev A. Kh. 1 Shermatova Z. Kh. 2

Barcha differensiallashlari ichki bo‘lgan Leybnits
algebralari
Ushbu ishda mukammal Leybnits algebralarining ba’zi
xossalarini qaraymiz. Mukammal Li algebralari uchun
olingan ba’zi natijalarni Leybnits algebralari uchun
kengaytiramiz.
Kalit so‘zlar: Leybnits algebrasi; ideal; nilradikal; radikal;
markaz; differensiallash.

Алгебры Лейбница только с внутренним дифференци-
рованием
В этой статье мы рассматриваем некоторые свойства
совершенные алгебры Лейбница. Мы распространяем
некоторые результаты, полученные для совершенных
алгебр Ли, на случай алгебр Лейбница.
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Introduction

A Lie algebra is called complete if its center is zero, and all its derivations are inner. The definition of
complete Lie algebras was given by N. Jacobson in 1962 [12]. The first important result of complete Lie
algebras first appeared in 1951 [11], in the context of Schenkman’s theory of subinvariant Lie algebras.
In recent years, different authors have concentrated on classifications and structural properties of
complete Lie algebras.

It is well known that semisimple Lie algebras over field of characteristic 0, the Borel subalgebras,
and the parabolic subalgebras of complex semisimple Lie algebras are complete Lie algebras. It has
been proved by E. V. Schenkman that the holomorph of an abelian Lie algebra over the complex field
C is a complete Lie algebra. A complete Lie algebra is called a simple complete Lie algebra if not any
of its non-trivial ideals are complete. D. J. Meng [8] has proved that any finite dimensional complete
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Lie algebra can be decomposed into the direct sum of simple complete ideals, and the decomposition
is unique up to the order of the ideals. He has studied some complete Lie algebras with commutative
nilpotent radical and other complete Lie algebras whose nilpotent radicals are the direct sum of abelian
Lie algebras and Heisenberg algebras in [8], [10]. Heisenberg algebras play an important role in physics.
C. P. Jiang, D. J. Meng and S. Q. Zhang [6] have given the derivation algebra DerH and the holomorph
h(H) of the finite dimensional Heisenberg algebra H over the complex field and have also given the
derivation algebra Der(h(H)) of h(H). They proved that DerH was a simple complete Lie algebra,
h(H) was not a complete Lie algebras, but its derivation algebra Derh(H) was a simple complete Lie
algebra. Therefore, they have obtained two important classes of complete Lie algebras.

In [9] solvable complete Lie algebras were studied by D. J. Meng and L. S. Zhu. However, up to
now there are a great deal of complete Lie algebras unknown. So, looking for complete Lie algebras is
still an important task. In 2002 Y. C. Gao and D. J. Meng [5] first have given a necessary and sufficient
condition for some solvable Lie algebras with l-step nilpotent radicals to be complete and a method to
construct non-solvable complete Lie algebras.

A comprehensive study of the Lie algebra theory resulted in a number of beautiful results and
generalizations. In particular, Loday introduced in [7] a non skew-symmetric analogue of a Lie algebra,
called Leibniz algebra.

A simple, but yet productive property from Lie theory, namely the fact that the right multiplication
operator on an element of the algebra is a derivation, can also be taken as a defining property for
a Leibniz algebra. In the last years, Leibniz algebras have been under active research; among the
numerous papers devoted to this subject, we can find some (co)homology and deformations properties,
results on various types of decompositions, structure of solvable and nilpotent Leibniz algebras and
classifications of some classes of graded nilpotent Leibniz algebras. Also, many results of theory of Lie
algebras have been extended to the Leibniz algebras case. For instance, the classical results on Cartan
subalgebras, Levi decomposition, Killing form, Engel’s theorem, properties of solvable algebras with a
given nilradical and others from the theory of Lie algebras are also true for Leibniz algebras. Recently,
D. Barnes proved an analogue of Levi’s theorem for the case of Leibniz algebras [3]; namely, a Leibniz
algebra L is decomposed into a semidirect sum of its solvable radical and a semisimple Lie subalgebra,
L = S+̇R. He also presents an example in which two semisimple Lie subalgebras corresponding to
different decompositions are not conjugate by an inner automorphism.

The aim of this article is to discuss complete Leibniz algebras. In this work we consider some
properties of complete Leibniz algebras. We extend some results obtained for complete Lie algebras to
the case of Leibniz algebras.

Throughout the paper we denote by F a field of characteristic zero and by L a finite dimensional
Leibniz algebra over F.

Preliminaries

Definition 1. A vector space with bilinear bracket (L, [−,−]) over a field F is called a Leibniz algebra
if for any x, y, z ∈ L the so-called Leibniz identity[

x, [y, z]
]
=
[
[x, y], z

]
−
[
[x, z], y

]
holds.

Definition 2. For a given Leibniz algebra (L, [−,−]) the sequences of two-sided ideals defined
recursively as follows:

L1 = L, Lk+1 = [Lk, L], k ≥ 1,

L[1] = L, L[s+1] = [L[s], L[s]], s ≥ 1,

are said to be the lower central and the derived series of L, respectively.
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Definition 3. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there exists
n ∈ N (m ∈ N) such that Ln = 0 (respectively, L[m] = 0). The minimal number n (respectively, m)
with such property is said to be the index of nilpotency (respectively, of solvability) of the algebra L.

Evidently, the index of nilpotency of an n-dimensional nilpotent algebra is not greater than n+ 1.
Definition 3. An n-dimensional Leibniz algebra L is said to be null-filiform if dimLi = n+ 1−

i, 1 ≤ i ≤ n+ 1.
Evidently, null-filiform Leibniz algebras have maximal index of nilpotency.
Theorem 1.[1] An arbitrary n-dimensional null-filiform Leibniz algebra is isomorphic to the algebra

NFn : [ei, e1] = ei+1, 1 ≤ i ≤ n− 1,

where {e1, e2, . . . , en} is a basis of the algebra NFn.
From this theorem it is easy to see that a nilpotent Leibniz algebra is null-filiform if and only if it

is a one-generated algebra, i.e. an algebra generated by a simple element. Note that this notion has no
sense in Lie algebras case, because they are at least two-generated.

Definition 4. The maximal nilpotent (respectively, solvable) ideal of a Leibniz algebra is called
the nilradical (respectively, radical) of the algebra.

Notice that the nilradical is not the radical in the sense of Kurosh, because the quotient Leibniz
algebra by its nilradical may contain a nilpotent ideal (see [12]).

Theorem 2. [4] Let R be a solvable Leibniz algebra whose nilradical is NFn. Then there exists a
basis {e1, e2, . . . , en, x} of the algebra R such that the multiplication table of R with respect to this basis
has the following form: 

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1,

[x, e1] = e1,

[ei, x] = −iei, 1 ≤ i ≤ n.

We recall an analogue of Levi’s theorem for Leibniz algebras given in [3].
Theorem 3. Let L be a finite-dimensional Leibniz algebra over a field of characteristic zero and

let R be its solvable radical. Then there exists a semisimple Lie subalgebra S of L such that L = S+̇R.
The subalgebra S of the above theorem, similarly to Lie algebras theory, is called a Levi subalgebra

of the Leibniz algebra L.
Definition 5. A linear map d : L→ L of a Leibniz algebra (L, [−,−]) is said to be a derivation if

for all x, y ∈ L, the following condition holds:

d([x, y]) = [d(x), y] + [x, d(y)]

The set of all derivations of L (denoted by Der(L)) forms a Lie algebra with respect to the
commutator.

For a given element x of a Leibniz algebra L, the right multiplication operator Rx : L→ L, defined
by Rx(y) = [y, x], is a derivation. In fact, a Leibniz algebra is characterized by this property of the
right multiplication operators. As in Lie case this kind derivations are said to be inner derivations. Let
the set of all inner derivations of a Leibniz algebra L denote by R(L), i.e. R(L) = {Rx | x ∈ L}.

Definition 6. The set Z(L) = {z ∈ L : [x, z] = [z, x] = 0, ∀x ∈ L} is called the center of L.
Definition 7. A Lie algebra G is called complete if its derivations are all inner and its center is 0.
Proposition 1.[12] If R is complete and an ideal in G Lie algebra, then G = R⊕ S where S is an

ideal.
In this paper we consider the notion of complete Leibniz algebras as given in [2].
Definition 8.[2] A Leibniz algebra L is called complete if Z(L) = 0 and all derivations of L are

inner.
The solvable Leibniz algebraR in Theorem 2 was shown to be complete in [2] by Ancochea Bermudez

J. M. and Campoamor-Stursberg R.



Khudoyberdiyev A. Kh., Shermatova Z. Kh. On Leibniz algebras with only inner derivations 15

Main results

We have the following result:
Theorem 4. Let L be a Leibniz algebra and L = R+̇sl2 be its Levi decomposition, where R is a

complete solvable ideal whose nilradical is NFn. Then L = R⊕ sl2 in other words, L is the direct sum
of ideals.

Proof. Let L be a Leibniz algebra, such that L = R+̇sl2, be its Levi decomposition, where R is a
solvable ideal whose nilradical is NFn. Then there exists a basis {e, h, f, e1, e2, . . . , en, x} of the algebra
L such that the table of multiplication in L has the following form:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e, [f, h] = −2f, [f, e] = −h,

[e, ei] =
n∑

j=1
αijej + αix, [h, ei] =

n∑
j=1

βijej + βix, [f, ei] =
n∑

j=1
γijej + γix,

[ei, e] =
n∑

j=1
α

′
ijej + α

′
ix, [ei, h] =

n∑
j=1

β
′
ijej + β

′
ix, [ei, f ] =

n∑
j=1

γ
′
ijej + γ

′
ix,

[e, x] =
n∑

j=1
δjej + δx, [h, x] =

n∑
j=1

σjej + σx, [f, x] =
n∑

j=1
τjej + τx,

[x, e] =
n∑

j=1
δ
′
jej + δ

′
x, [x, h] =

n∑
j=1

σ
′
jej + σ

′
x, [x, f ] =

n∑
j=1

τ
′
jej + τ

′
x,

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, [x, e1] = −e1,
[ei, x] = iei, 1 ≤ i ≤ n,

where 1 ≤ i ≤ n.
Now we will study the products [R, sl2] and [sl2, R].
From the following identity

[e, [e1, e1]] = 0 = [e, e2] =

n∑
j=1

α2jej + α2x,

we obtain that α2j = 0 for 1 ≤ j ≤ n, and α2 = 0.
We consider the Leibniz identity:

[e, [e1, ei]] = [[e, e1], ei]− [[e, ei], e1] = (
n∑

j=1
α1jej + α1x)ei − (

n∑
j=1

αijej + αix)e1 =

= −
n−1∑
j=1

αijej+1 + αie1, 2 ≤ i ≤ n.

On the other hand, we have that [e, [e1, ei]] = 0 for 2 ≤ i ≤ n.
Comparing the coefficients at the basic elements we obtain αij = 0 for 1 ≤ j ≤ n− 1, and αi = 0

for 2 ≤ i ≤ n, thus [e, ei] = αinen with 3 ≤ i ≤ n.
Consider the following equalities

[e, [ei, e1]] = [[e, ei], e1]− [[e, e1], ei] = [αinen, e1]− (
n∑

j=1
α1jej + α1x)ei =

= 0 = [e, ei+1] = αi+1,nen, 2 ≤ i ≤ n.

Then we have that [e, ei] = 0 with 2 ≤ i ≤ n.

0 = [[e1, ei], e] = [e1, [ei, e]] + [[e1, e], ei] = [e1,
n∑

j=1
α

′
ijej + α

′
ix] + [

n∑
j=1

α
′
1jej + α

′
1x, ei] =

= α
′
i1e2 + α

′
ie1,
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it follows that α′
i1 = 0 and α′

i = 0 for 2 ≤ i ≤ n.

[x, [e, x]] = [[x, e], x]− [[x, x], e] = [
n∑

j=1
δ
′
jej + δ

′
x, x] =

=
n∑

j=1
δ
′
jjej .

On the other hand, we have that [x, [e, x]] = [x,
n∑

j=1
δjej + δx] = −δ1e1.

Comparing the coefficients at the basic elements we obtain δ′1 = −δ1 and δ′j = 0 for 2 ≤ j ≤ n.

[e1, [e, x]] = [[e1, e], x]− [[e1, x], e] = [
n∑

j=1
α

′
1jej + α

′
1x, x]− [e1, e] =

=
n∑

j=1
α

′
1jjej − (

n∑
j=1

α
′
1jej + α

′
1x) =

n∑
j=1

α
′
1j(j − 1)ej − α

′
1x =

= [e1,
n∑

j=1
δjej + δx] = δ1e2 + δe1.

We obtain that δ = 0, α
′
12 = δ1 and α′

1j = 0 for 3 ≤ j ≤ n.

[[e, x], e1] = [e, [x, e1]] + [[e, e1], x] = −[e, e1] + [
n∑

j=1
α1jej + α1x, x] =

= −
n∑

j=1
α1jej − α1x+

n∑
j=1

α1jjej =
n∑

j=1
α1j(j − 1)ej − α1x =

= [
n∑

j=1
δjej , e1] =

n−1∑
j=1

δjej+1,

it follows that α1 = 0, δj = jα1,j+1 for 1 ≤ j ≤ n− 1.

[e1, [x, e]] = [[e1, x], e]− [[e1, e], x] = [e1, e]− [α
′
11e1 + δ1e2 + α

′
1x, x] =

= α
′
11e1 + δ1e2 + α

′
1x− α

′
11e1 − 2δ1e2 = α

′
1x− δ1e2 = [e1,−δ1e1 + δ

′
x] = −δ1e2 + δ

′
e1,

Thus we have that δ′ = α
′
1 = 0.

[[x, e], e1] = [x, [e, e1]] + [[x, e1], e] = [x,
n∑

j=1
α1jej ]− [e1, e] = −α11e1 − α

′
11e1 − δ1e2 =

= −(α11 + α
′
11)e1 − δ1e2 = −[δ1e1, e1] = −δ1e2

it follows that α′
11 = −α11.

[ei, [e, x]] = [[ei, e], x]− [[ei, x], e] = [
n∑

j=2
α

′
ijej , x]− i[ei, e] =

=
n∑

j=2
α

′
ijjej − i

n∑
j=2

α
′
ijej =

n∑
j=2

α
′
ij(j − i)ej =

= [ei,
n∑

j=1
δjej ] = δ1ei+1,

Thus α′
i,i+1 = δ1 and α′

ij = 0 for j 6= {i, i+ 1}, 2 ≤ i ≤ n− 1.

[en, [e, x]] = [[en, e], x]− [[en, x], e] = [
n∑

j=2
α

′
njej , x]− n[en, e] =

=
n∑

j=2
α

′
njjej − n

n∑
j=2

α
′
njej =

n∑
j=2

α
′
nj(j − n)ej =

= [en,
n∑

j=1
δjej ] = 0,
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We get α′
nj = 0 for 2 ≤ j ≤ n− 1.

[ei, [e1, e]] = [[ei, e1], e]− [[ei, e], e1] = [ei+1, e]− [α
′
iiei + δ1ei+1, e1] =

= α
′
i+1,i+1ei+1 + δ1ei+2 − α

′
iiei+1 − δ1ei+2 = (α

′
i+1,i+1 − α

′
ii)ei+1 =

= [ei,−α11e1 + δ1e2] = −α11ei+1,

it follows that α′
i+1,i+1 − α

′
ii = −α11 for 1 ≤ i ≤ n− 1, we have that α′

ii = −iα11, for 1 ≤ i ≤ n.
Similarly, applying the Leibniz identity to the triples {h, e1, ei}; {x, h, x}; {ei, h, x}; {f, e1, ei};

{x, f, x} and {ei, f, x} for 1 ≤ i ≤ n, we get the following table of multiplications:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e, [f, h] = −2f, [f, e] = −h,

[e, e1] =
n∑

j=1
α1jej , [h, e1] =

n∑
j=1

β1jej , [f, e1] =
n∑

j=1
γ1jej ,

[ei, e] = −iα11ei + α12ei+1, [ei, h] = −iβ11ei + β12ei+1, [ei, f ] = −iγ11ei + γ12ei+1,
1 ≤ i ≤ n− 1,

[en, e] = α
′
nnen, [en, h] = β

′
nnen, [en, f ] = γ

′
nnen,

[e, x] =
n−1∑
j=1

jα1,j+1ej + δnen, [h, x] =
n−1∑
j=1

jβ1,j+1ej + σnen, [f, x] =
n−1∑
j=1

jγ1,j+1ej + τnen,

[x, e] = −α12e1, [x, h] = −β12e1, [x, f ] = −γ12e1,
[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, [x, e1] = −e1,
[ei, x] = iei, 1 ≤ i ≤ n.

Using the above obtained equalities and the following

[en, [e, h]] = [[en, e], h]− [[en, h], e] = [α
′
nnen, h]− [β

′
nnen, e] =

= α
′
nnβ

′
nnen − β

′
nnα

′
nnen = 0 = [en, 2e] = 2[en, e] = 2α

′
nnen,

it follows that α′
nn = 0, we have that 0 = α

′
nn = −nα11, so α

′
ii = −iα11 = 0, for 1 ≤ i ≤ n.

Similarly, applying the Leibniz identity to the triples {en, f, h} and {en, e, f} we have that βii =
γii = 0 for 1 ≤ i ≤ n.

Now we consider the equalities

[x, [e, h]] = [[x, e], h]− [[x, h], e] = [−α12e1, h]− [−β12e1, e] =

= −α12β12e2 + β12α12e2 = 0 = [x, 2e] = −2α12e1,

and we have that α12 = 0, also β12 = γ12 = 0.

[[e, h], e1] = [e, [h, e1]] + [[e, e1], h] = [e,
n∑

j=3
β1jej ] + [

n∑
j=3

α1jej , h] =

= 0 = [2e, e1] = 2
n∑

j=3
α1jej ,

it follows that α1j = 0 for 3 ≤ j ≤ n, also β1j = 0 and γ1j = 0 for 3 ≤ j ≤ n.

[[e, h], x] = [e, [h, x]] + [[e, x], h] = [e, σnen] + [δnen, h] =

= 0 = [2e, x] = 2δnen.

Hence δn = 0, also σn = τn = 0.
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Consequently, we obtain the following table of multiplication:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e, [f, h] = −2f, [f, e] = −h,
[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, [x, e1] = −e1,
[ei, x] = iei, 1 ≤ i ≤ n.
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