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Abstract

In this paper, we investigate solvable Leibniz superalgebras whose nilradical
is a Lie superalgebra with maximal nilindex. It should be noted that Lie super-
algebra with a maximal nilindex only exists in the variety of Lie2,m when m is
odd. We give the classification of all solvable Leibniz superalgebras such that
even part is a Lie algebra and nilradical is a Lie superalgebra with a maximal
index of nilpotency.
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Introduction

Extensive investigations in Lie algebras theory have to lead to the appearance of more
general algebraic objects - Mal’cev algebras, binary Lie algebras, Lie superalgebras,
Leibniz algebras and others.

Lie superalgebras have been studied as the fundamental algebraic structures be-
hind several areas of mathematical physics in the 1970s. The systematical exposition
of basic Lie superalgebras theory can be found in [16]. Leibniz superalgebras are
generalizations of Leibniz algebras, and on the other hand, they naturally generalize
Lie superalgebras [2].

According to the structural theory of Lie algebras, a finite-dimensional Lie al-
gebra is written as a semidirect sum of its semisimple subalgebra and the solvable
radical(Levi’s theorem). The semisimple part is a direct sum of simple Lie algebras,
which are completely classified in the fifties of the last century. At the same period,
the essential progress has been made in the solvable part by Mal’cev reducing the
problem of classification of solvable Lie algebras to that of nilpotent Lie algebras [20].
Since then all the classification results have been related to the nilpotent part.

The investigation of solvable Lie algebras with special types of nilradicals was
the subject of various paper [3, 4, 7, 21]. In Leibniz algebras, the analogue of Levi’s
theorem was recently proved in [6], thus solvable Leibniz algebras also play a central
role in the study of Leibniz algebras. In particular, the classifications of n-dimensional
solvable Leibniz algebras with some restriction on their nilradicals have been obtained
(see [1, 10, 11, 12]).
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The nilpotent Lie algebras of a maximal index of nilpotency are called filiform,
and the filiform Lie algebras firstly investigated by Vergne [23]. From then on, fili-
form Lie algebras, especially naturally graded filiform Lie algebras Ln, Qn, and their
deformations have been central research objects. This type of nilpotent Lie algebras
have important properties; for example, every filiform Lie algebra can be obtained
by a deformation of the filiform Lie algebra Ln.

In works [13], [14] the problem of the description of some classes of nilpotent Lie
superalgebras have been studied. In particular, the classification of nilpotent Lie
superalgebras with maximal index of nilpotency is obtained in [14]. For nilpotent
Leibniz superalgebras, it turned to be comparatively easy and was solved in [2]. The
distinctive property of such Leibniz superalgebras is that they are single-generated
and have the nilindex n +m + 1. The next step – the description of Leibniz super-
algebras with dimensions of even and odd parts, respectively equal to n and m, and
with nilindex n+m were classified by applying restrictions the invariant such called
characteristic sequences in [5], [8], [9], [15]. Leibniz superalgebras with a semisimple
even part are studied in [17].

The works of V. Kac, M. Rodríguez-Vallarte, G. Salgado and , O. A. Sánchez-
Valenzuela are devoted to the solvable Lie superalgebras [16], [22]. In paper [22],
solvable Lie superalgebras with a Heisenberg nilradical are considered. In this pa-
per, we classify solvable Leibniz superalgebras whose even part is a Lie algebra and
nilradical is a nilpotent Lie superalgebra with maximal nilindex. In addition, some
facts have been proved for the solvable Leibniz superalgebras.

Throughout this work, we shall consider spaces, algebras and superalgebras over
the field of complex numbers.

1 Preliminaries
In this section, we give necessary definitions and preliminary results.

Definition 1. [19] An algebra (L, [·, ·]) over a field K is called a Leibniz algebra if
it is defined by the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y], for all x, y, z ∈ L.

In fact for Leibniz algebra L the ideal I = span{[x, x] | x ∈ L} coincides with
the space spanned by squares of elements of L. Moreover, it is readily to see that
this ideal belongs to the right annihilator, that is [L, I] = 0. Note that the ideal I is
the minimal ideal with respect to the property that the quotient algebra L/I is a Lie
algebra.

Definition 2. A Z2-graded vector space G = G0 ⊕G1 is called a Lie superalgebra if
it is equipped with a product [−,−] which satisfies the following conditions:

1. [x, y] = −(−1)αβ[y, x], for any x ∈ Gα, y ∈ Gβ,
2. (−1)αγ[x, [y, z]] + (−1)αβ[y, [z, x]] + (−1)βγ[z, [x, y]] = 0 – for any x ∈ Gα,

y ∈ Gβ, z ∈ Gγ (Jacobi superidentity).

2



Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Definition 3. A Z2-graded vector space L = L0⊕L1 is called a Leibniz superalgebra
if it is equipped with a product [−,−] which satisfies the following condition:[

x, [y, z]
]
=
[
[x, y], z

]
− (−1)αβ

[
[x, z], y

]
− Leibniz superidentity

for all x ∈ L, y ∈ Lα, z ∈ Lβ.

Note that if in Leibniz superalgebra L the identity

[x, y] = −(−1)αβ[y, x]

holds for any x ∈ Lα and y ∈ Lβ, then the Leibniz superidentity can be transformed
into the Jacobi superidentity. Thus, Leibniz superalgebras are a generalization of Lie
superalgebras.

The vector spaces L0 and L1 are said to be the even and odd parts of the su-
peralgebra L, respectively. It is obvious that L0 is a Leibniz algebra and L1 is a
representation of L0.

Denote by Lien,m and Leibn,m the sets of Lie and Leibniz superalgebras with
dimensions of the even part and the odd part, respectively equal to n and m.

For a given Leibniz superalgebra L the lower central and derived series are defined
as follows:

L1 = L, Lk+1 = [Lk, L], k ≥ 1,

L[1] = L, L[s+1] = [L[s], L[s]], s ≥ 1,

respectively.

Definition 4. A Leibniz superalgebra L is said to be nilpotent (respectively, solvable),
if there exists k ∈ N (s ∈ N) such that Lk = {0} (respectively, L[s] = {0}). The
minimal number k with such property is said to be the index of nilpotency or the
nilindex of the superalgebra L.

In the following theorem, we describe of Lie superalgebras with a maximal index
of nilpotency.

Theorem 1. [8] . Let G ∈ Lien,m be a Lie superalgebra with nilindex n +m. Then
n = 2, m−is odd and there exists a basis {e1, e2, y1, y2, . . . , ym} of superalgebra G
such that its multiplications in this basis have the following form:

N2,m :

{
[yi, e1] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ m+1
2
.

Definition 5. The set
R(L) = {z ∈ L | [L, z] = 0}

is called the right annihilator of the superalgebra L.
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Using the Leibniz superidentity it is easy to see that R(L) is an ideal of the
superalgebra L. Moreover, the elements of the form [a, b]+ (−1)αβ[b, a], (a ∈ Lα, b ∈
Lβ) belong to R(L).

The linear operator adx : L→ L, x ∈ L such that adx(y) = [y, x] is called a right
multiplication operator.

It is obvious that:

x ∈ L0, adx : L0 → L0, adx : L1 → L1,

x ∈ L1, adx : L0 → L1, adx : L1 → L0.

Note that Engel’s Theorem and its direct consequences remain valid for Lie su-
peralgebras. Moreover, a Lie superalgebra is nilpotent if and only if Rx is nilpotent
for any homogeneous element x ∈ L.

2 Main part
It should be noted that Lie superalgebra G = G0 ⊕ G1 is solvable if and only if G0

is solvable. But there exist non-nilpotent Lie superalgebra such that G0 is nilpotent,
i.e., from the nilpotentcy of G0 the nilpotentcy of G is not implied in general. By
the Engel’s theorem for Lie superalgebras we can conclude that Lie superalgebra is
nilpotent if and only if the operator adx is nilpotent for any homogeneous element
x ∈ G.

Since the Engel’s theorem also holds for the Leibniz superalgebras, then for the
nilpotency of the Leibniz superalgebra, it is necessary to show the nilpotency of the
operators

adx : L0 → L0, adx : L1 → L1, ady : L→ L, for all x ∈ L0, y ∈ L1.

Let L = L0⊕L1 be a Leibniz superalgebra, then for the operator adx we have the
following lemmas.

Lemma 1. Let L = L0 ⊕ L1 be Leibniz superalgebra such that L0 is a nilpotent. If
y ∈ L1 is an eigenvector of adx for x ∈ L0, with non-zero eigenvalue λ, then [y, y] = 0.

Proof. By the condition of the lemma adx(y) = [y, x] = λy, with λ 6= 0.
From the Leibniz superidentity:

[y, [y, x]] = [[y, y], x]− [[y, x], y],

we have that 2λ[y, y] = [[y, y], x]. Thus, adx([y, y]) = 2λ[y, y]. Since L0 is a nilpotent,
we derive that the operator adx is nilpotent of L0 by the Engel’s theorem. Then we
have 2λ[y, y] = 0, which implies [y, y] = 0.

Lemma 2. Let L = L0⊕L1 be a Leibniz superalgebra such that L0 is nilpotent. Then
ady is nilpotent for any y ∈ L1.
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Proof. Suppose that the operator ady is non-nilpotent, then there exists an eigenvalue
λ 6= 0, such that

ady(x
′ + y′) = λ(x′ + y′), x′ ∈ L0, y

′ ∈ L1.

Since y ∈ L1, we have that [x′, y] = λy′, [y′, y] = λx′.
Consider the following Leibniz superidentity:

[x′, [y, y]] = 2[[x′, y], y] = 2λ2[y′, y] = 2λ2x′.

On the other hand [x′, [y, y]] = ad[y,y](x
′), which implies ad[y,y](x′) = 2λ2x′.

Since [y, y] ∈ L0, then ad[y,y] is a nilpotent of L0, which implies λ = 0. This is a
contradiction, hence ady is a nilpotent for any y ∈ L1.

Recall that, the maximal nilpotent ideal N of a Leibniz superalgebra L such that
[L,L] ⊂ N is called a nilradical. We investigate solvable Leibniz superalgebras such
that nilradical is a Lie superalgebra with a maximal index of nilpotency.

From Lemma 2, we have that if L = L0 ⊕ L1 is a solvable Leibniz superalgebra
with nilradical N = N0 ⊕N1, then dimL1 = dimN1.

Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra with nilradical N2,m. Then
from the previous consideration we obtain that dimL1 = m and dim(L0) ≤ 4. Thus,
we consider the cases when dim(L0) = 3 and dim(L0) = 4.

In case of L0 is a Lie algebra we have the following Lemma.

Lemma 3. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical is
isomorphic to N2,m and let L0 is a Lie algebra. Then L is a Lie superalgebra.

Proof. Let dimL0 = k and dimL1 = m. Then there exits a basis {e1, e2, . . . , ek, y1, y2, . . . , ym}
of L such that {

[yi, e1] = −[e1, yi] = yi+1, 1 ≤ i ≤ m− 1,

[ym+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ m.
(1)

Since L0 is a Lie algebra, then [ei, ej] = −[ej, ei] for all 1 ≤ i, j ≤ k.
Moreover, the multiplications [ei, yj] and [yj, ei] for 3 ≤ i ≤ k, 1 ≤ j ≤ m

belong to the L1 and [ei, yj] + [yj, ei] ∈ R(L). Since L1 ∩ R(L) = 0, we have that
[ei, yj] = −[yj, ei]. Thus, L is a Lie superalgebra.

2.1 L0 is a three dimensional Lie algebra.

Proposition 1. Let L = L0⊕L1 be a solvable Leibniz superalgebra whose nilradical is
isomorphic to N2,m. Let dim(L0) = 3 and L0 is a Lie algebra, then L0 is not nilpotent.

Proof. Let us suppose the contrary, i.e. L0 is a nilpotent Lie algebra. Then L0 is
either abelian or isomorphic to the algebra n3 : [f1, f2] = f3.
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Case 1. First we consider the case when L0 is an abelian. Then L0 = {e1, e2, x},
L1 = {y1, y2, . . . , yn} and{

[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
.

Assume
[y1, x] = a1y1 + a2y2 + · · ·+ anyn.

Then for 2 ≤ i ≤ n, inductively, we have

[yi, x] = [[yi−1, e1], x] = [yi−1, [e1, x]] + [[yi−1, x], e1] = a1yi + a2yi+1 · · ·+ an−i+1yn.

Consider
[x, [yn+1

2
, yn+1

2
]] = 2[[x, yn+1

2
], yn+1

2
] =

= −2[a1yn+1
2

+ a2yn+1
2

+1 + · · ·+ an+1
2
yn, yn+1

2
] = 2(−1)

n+1
2 a1e2.

On the other hand:

[x, [yn+1
2
, yn+1

2
]] = [x, (−1)

n+1
2

+1e2] = 0,

which implies a1 = 0.
Thus, we have that adx : L1 → L1 is nilpotent, which derives that L is nilpotent.

It is a contradiction.
Case 2. Now we consider the case when L0 is isomorphic to the algebra n3. Then

L0 has a basis {f1, f2, x} such that [f1, x] = f2, where

f1 = α1e1 + α2e2, f2 = β1e1 + β2e2.

Case 2.1. Let α1 6= 0, then e2 = γ1f1 + γ2f2 and we have
[f1, x] = f2,

[yi, f1] = α1yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1(γ1f1 + γ2f2), 1 ≤ i ≤ n+1
2
.

where γ2 6= 0. Making the change y′i = αi−11 yi, 1 ≤ i ≤ n we may suppose α1 = 1.
Put

[y1, x] = a1y1 + a2y2 + · · ·+ anyn.

Using the Leibniz superidentity, we have

[y2, x] = [[y1, f1], x] = [y1, [f1, x]] + [[y1, x], f1] =

= [y1, f2] + [a1y1 + a2y2 + · · ·+ anyn, f1] = (a1 +
γ1
γ2

)y2 + a2y3 + · · ·+ an−1yn.

Considering the superidentity [[yi−1, f1], x] = [yi−1, [f1, x]] + [[yi−1, x], f1], induc-
tively we obtain

[yi, x] = (a1 + (i− 1)
γ1
γ2

)yi + a2yi+1 + a3yi+2 + · · ·+ an+1−iyn, 2 ≤ i ≤ n.
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Now consider
[x, [yn+1

2
, yn+1

2
]] = 2[[x, yn+1

2
], yn+1

2
] =

= −2[(a1 +
(n− 1)γ1

2γ2
)yn+1

2
+ a2yn+1

2
+1 + · · ·+ an+1

2
yn, yn+1

2
] =

2(−1)
n+1
2 (a1 +

(n− 1)γ1
2γ2

)(γ1f1 + γ2f2).

On the other hand,

[x, [yn+1
2
, yn+1

2
]] = [x, (−1)

n+1
2

+1(γ1f1 + γ2f2)] = −(−1)
n+1
2

+1γ1f2,

Comparing the coefficients at the basis elements, we have γ1 = 0, a1 = 0. Therefore
we get that adx : L1 → L1 is nilpotent, which derives that L is nilpotent. It is a
contradiction.

Case 2.2. Let α1 = 0. Then α2 6= 0 and making the change y′i = αi−12 yi, 1 ≤ i ≤ n
we may assume α2 = 1, i.e.,

[f1, x] = f2,

[yi, f2] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1(γ1f1 + γ2f2), 1 ≤ i ≤ n+1
2
.

where γ1 6= 0.
Put [y1, x] = a1y1 + a2y2 + · · ·+ anyn.
Using the identity [[yi−1, f2], x] = [yi−1, [f2, x]] + [[yi−1, x], f2] for 2 ≤ i ≤ n, we

obtain
[yi, x] = a1yi + a2yi+1 + · · ·+ an−i+1yn.

Consider following Leibniz superidentity:

[x, [yn+1
2
, yn+1

2
]] = 2[[x, yn+1

2
], yn+1

2
] = −2[a1yn+1

2
+ a2yn+1

2
+1 + · · ·+ an+1

2
yn, yn+1

2
] =

= 2(−1)
n+1
2 a1(γ1f1 + γ2f2).

On the other hand,

[x, [yn+1
2
, yn+1

2
]] = [x, (−1)

n+1
2

+1(γ1f1 + γ2f2)] = (−1)
n+1
2 γ1f2.

Comparing the coefficients at the basis elements, we have γ1 = 0. This is a con-
tradiction.

According to Proposition 1, we obtain that if L = L0 ⊕ L1 is a solvable Leibniz
superalgebra whose nilradical is isomorphic to N2,m and dim(L0) = 3, then L0 is a
solvable Lie algebra. It is well-known that there exist two three-dimensional solvable
Lie algebras:

r1 : [f1, x] = f1 + f2, [f2, x] = f2.

r2(α) : [f1, x] = f1, [f2, x] = αf2, α ∈ C.
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Proposition 2. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical
is isomorphic to N2,m and L0

∼= r1. Then L is isomorphic to

M1 :



[e1, x] = e1 + e2,

[e2, x] = e2,

[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

[yi, x] = (i− n
2
)yi, 1 ≤ i ≤ n.

Proof. From the condition of the proposition, we have that there exists a basis
{f1, f2, x} of L0 such that

[f1, x] = f1 + f2, [f2, x] = f2.

Moreover, from Theorem 1, we have that there is a basis {e1, e2, y1, y2, . . . , yn} of
N2,n such that {

[yi, e1] = yi+1 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

where f1 = A1e1 + A2e2, f2 = B1e1 +B2e2.
Case 1. Let A1 6= 0, then we have:

[f1, x] = f1 + f2,

[f2, x] = f2,

[yi, f1] = A1yi+1 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1(α1f1 + α2f2), 1 ≤ i ≤ n+1
2
.

where α2 6= 0.
Making the change of basis f ′1 =

1
A1
f1, f

′
2 =

1
A1
f2, we may suppose A1 = 1.

Put
[y1, x] = a1y1 + a2y2 + · · ·+ anyn.

Considering Leibniz superidentity, we have

[y2, x] = [[y1, f1], x] = [y1, [f1, x]]+[[y1, x], f1] = [y1, f1+f2]+[a1y1+a2y2+· · ·+anyn, f1] =

= (a1 + 1− α1

α2

)y2 + a2y3 + · · ·+ an−1yn.

Similarly, from the Leibniz superidentities [[yi−1, f1], x] = [yi−1, [f1, x]]+[[yi−1, x], f1]
inductively, we have

[yi, x] = (a1 + i− 1− (i− 1)α1

α2

)yi + a2yi+1 + · · ·+ an−i+1yn, 1 ≤ i ≤ n.

Consider
[x, [yn+1

2
, yn+1

2
]] = 2[[x, yn+1

2
], yn+1

2
] =
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= −2[(a1 +
n+ 1

2
− 1−

n−1
2
α1

α2

)yn+1
2

+ a2yn+1
2

+1 + · · ·+ an+1
2
yn, yn+1

2
] =

= 2(−1)
n+1
2 (a1 +

n+ 1

2
− 1−

n−1
2
α1

α2

)(α1f1 + α2f2).

On the other hand,

[x, [yn+1
2
, yn+1

2
]] = [x, (−1)

n+1
2

+1(α1f1 + α2f2)] = (−1)
n+1
2 (α1f1 + (α1 + α2)f2).

Thus, we have

(2a1 + n− 2− (n− 1)α1

α2

)α1 = 0, (2a1 + n− 2− (n− 1)α1

α2

)α2 + α1 = 0,

which implies α1 = 0 and a1 = 2−n
2
.

Considering Leibniz superidentities for the triple {x, yi, yi}, where 1 ≤ i ≤ n−1
2
,

we have
0 = [x, [yi, yi]] = 2[[x, yi], yi] =

= −2[(2− n
2

+ i− 1)yi + a2yi+1 + · · ·+ an+1−iyn, yi] = (−1)i2an−2(i−1)α2f2,

which implies

a2i+1 = 0, 1 ≤ i ≤ n− 1

2
.

Thus, we have the following product

[f1, x] = f1 + f2,

[f2, x] = f2,

[yi, f1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1α2f2, 1 ≤ i ≤ n+1
2
,

[yi, x] = (i− n
2
)yi +

bn+1−i
2
c∑

k=1

a2kyi+2k−1, 1 ≤ i ≤ n.

Making the change y′i =
1√
α2
yi, 1 ≤ i ≤ n, one can assume α2 = 1.

Now we consider the following change of basis

f ′1 = f1, f ′2 = f2, x′ = x,

y′i = yi +
n+1−i∑
j=2

Ajyi+j−1, 1 ≤ i ≤ n.

Consider

[y′1, x
′] = (1− n

2
)y1 +

n−1
2∑

k=1

a2ky2k +
n∑
j=2

Aj

(
(j − n

2
)yj +

bn+1−j
2
c∑

k=1

a2kyj+2k−1

)
=

= (1− n
2
)y1 +

n−1
2∑

k=1

(
a2k + A2k(2k − n

2
) +

k∑
j=2

A2(k−j)+3a2j−2

)
y2k+

+

n−1
2∑

k=1

(
A2k+1(2k + 1− n

2
) +

k∑
j=1

A2(k−j)+2a2j

)
y2k+1.
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On the other hand,

[x′, y′1] = (1− n
2
)y′1 +

n−1
2∑

k=1

a′2ky
′
2k =

(1− n
2
)
(
y1 +

n∑
j=2

Ajyj
)
+

n−1
2∑

k=1

a′2k
(
y2k +

n+1−2k∑
j=2

Ajy2k+j−1
)
=

= (1− n
2
)y1 +

n−1
2∑

k=1

(
a′2k + A2k(1− n

2
) +

k∑
j=2

A2(k−j)+3a
′
2j−2

)
y2k+

+

n−1
2∑

k=1

(
A2k+1(1− n

2
) +

k∑
j=1

A2(k−j)+2a
′
2j

)
y2k+1.

Comparing the coefficients at the basis elements for 1 ≤ k ≤ n−1
2
, we have

a′2k = a2k + (2k − 1)A2k +
k∑
j=2

A2(k−j)+3(a2j−2 − a′2j−2)

2kA2k+1 +
k∑
j=1

A2(k−j)+2(a2j − a′2j) = 0.

Thus, taking

A2k =
1

1− 2k
a2k +

1

1− 2k

k∑
j=2

A2(k−j)+3a2j−2,

A2k+1 = −
1

2k

k∑
j=1

A2(k−j)+2a2j,

we may suppose

a′2k = 0, 1 ≤ k ≤ n− 1

2
.

Therefore, we have the superalgebra M1.
Case 2. A1 = 0. Then B1 6= 0 and instead of e1 we can take f2. Thus,

[f1, x] = f1 + f2,

[f2, x] = f2,

[yi, f2] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1(α1f1 + α2f2), 1 ≤ i ≤ n+1
2
,

where α1 6= 0.
Similarly to case 1, putting [y1, x] = a1y1 + a2y2 + · · · + anyn, using the Leibniz

superidentity we obtain

[yi, x] = (a1 + i− 1)yi + a2yi+1 + · · ·+ an−i+1yn, 1 ≤ i ≤ n.

10
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Now consider
[x, [yn+1

2
, yn+1

2
]] = −2[[x, yn+1

2
], yn+1

2
] =

2[(a1 +
n− 1

2
)yn+1

2
+ a2yn+1

2
+1 + · · ·+ an+1

2
yn, yn+1

2
] =

= 2(−1)
n+1
2 (a1 +

n− 1

2
)(α1e1 + α2e2).

On the other hand,

[x, [yn+1
2
, yn+1

2
]] = [x, (−1)

n+1
2

+1(α1e1 + α2e2)] = (−1)
n+1
2 (α1e1 + (α1 + α2)e2).

Therefore we get

(2a1 + n− 2)α1 = 0, (2a1 + n− 2)α2 − α1 = 0.

which implies α1 = 0. This is a contradiction with the condition that the nilradical
is N2,m.

Proposition 3. Let L = L0 ⊕ L1 be a solvable Leibniz superalgebra whose nilradical
is isomorphic to N2,m and L0

∼= r2(α). Then L is isomorphic to one of the following
two Lie superalgebras:

M2(α) :



[e1, x] = e1,

[e2, x] = αe2, α ∈ C,
[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

[yi, x] =
α+2i−n−1

2
yi, 1 ≤ i ≤ n.

M3 :


[e1, x] = e1,

[yi, e2] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e1, 1 ≤ i ≤ n+1
2
,

[yi, x] =
1
2
yi, 1 ≤ i ≤ n.

Proof. From the condition of the proposition, we have that there exists a basis
{f1, f2, x} of L0 such that

[f1, x] = f1, [f2, x] = αf2,

and a basis {e1, e2, y1, y2, . . . , yn} of N2,m such that{
[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

where f1 = A1e1 + A2e2, f2 = B1e1 +B2e2.

11
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Case 1. If A1 6= 0, then instead of e1 and e2 we can take f1 and α1f1 + α2f2,
respectively.

Put [y1, x] = a1y1 + a2y2 + · · ·+ bnyn.
Using the Leibniz superidentities, we obtain

[yi, x] = (a1 + i− 1)yi + a2yi+1 + · · ·+ an−i+1yn, 1 ≤ i ≤ n.

Now consider

[x, [yn+1
2
, yn+1

2
]] = 2[[x, yn+1

2
], yn+1

2
] = 2[(1−a1−

n+ 1

2
)yn+1

2
+a2yn+1

2
+1+· · ·+an+1

2
yn, yn+1

2
] =

= 2(−1)
n+1
2

+1(1− a1 −
n+ 1

2
)(α1f1 + α2f2),

On the other hand

[x, [yn+1
2
, yn+1

2
]] = [x, (−1)

n+1
2

+1(α1f1 + α2f2)] =

= (−1)
n+1
2

+1(−α1f1 − αα2f2),

Comparing the coefficients at the basis elements, we have

(2a1 + n− 2)α1 = 0, (2a1 + n− 1− α)α2 = 0.

Since α2 6= 0, we obtain a1 = 1+α−n
2

and (α− 1)α1 = 0.
If α 6= 1 then α1 = 0. In case of α = 1, making the change f ′2 = α1f1 + α2f2 one

can suppose α1 = 0. Therefore, we always get that α1 = 0.
Considering the following Leibniz superidentities for the triples [y1, [x, y1]] and

[x, [yi, yi]] for 1 ≤ i ≤ n−1
2
, we obtain

an = an−2 = · · · = a3 = 0, bn = 0.

Therefore, we have Lie superalgebra with the following multiplications:

[e1, x] = e1,

[e2, x] = αe2,

[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

[yi, x] = (α−n−1
2

+ i)yi +
bn+1−i

2
c∑

k=1

a2kyi+2k−1, 1 ≤ i ≤ n.

Making the change of basis

e′1 = e1, e′2 = e2, x′ = x,

y′i = yi +
n+1−i∑
j=2

Ajyi+j−1, 1 ≤ i ≤ n,

12
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with

A2k =
1

2k − 1
a2k +

1

2k − 1

k∑
j=2

A2(k−j)+3a2j−2,

A2k+1 =
1

2k

k∑
j=1

A2(k−j)+2a2j

we may suppose

a2k = 0, 1 ≤ k ≤ n− 1

2
.

Therefore, we have the superalgebra M2.
Case 2. If A1 = 0, then A2B1 6= 0 and instead of e1 we can take f2. Then

similarly to case 1, using the Leibniz superidentities and making the basis change we
obtain the following multiplications

[f1, x] = f1,

[f2, x] = αf2,

[yi, f2] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1f1, 1 ≤ i ≤ n+1
2
.

[yi, x] =
α(2i−n−1)+1

2
yi, 1 ≤ i ≤ n.

If α 6= 0, then making the change x′ = 1
α
x, we obtain the algebra M2(

1
α
). In case

of α = 0, we obtain the algebra M3.

Thus, we have the follofing theorem

Theorem 2. Let L = L0 ⊕ L1 be a solvable Lie superalgebra whose nilradical is
isomorphic to N2,m and dim(L0) = 3 Then L is isomorphic to one of the following
three non-isomorphic superalgebras:

M1, M2(α), M3.

2.2 L0 is a four dimensional Lie algebra.

Theorem 3. Let L = L0 ⊕ L1 be a solvable Lie superalgebra whose nilradical is
isomorphic to N2,m and let L0 is a four dimensional solvable Lie algebra. Then L is
isomorphic to the following superalgebra:

M4 :



[e1, x1] = e1,

[e2, x2] = e2,

[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

[yi, x1] = (i− n+1
2
)yi, 1 ≤ i ≤ n,

[yi, x2] =
1
2
yi, 1 ≤ i ≤ n.

13
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Proof. From the condition of the theorem, we have that there exists a basis {f1, f2, x1, x2}
of L0 such that

[f1, x1] = f1, [f2, x2] = f2,

and a basis {e1, e2, y1, y2, . . . , yn} of N2,m such that{
[yi, e1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1e2, 1 ≤ i ≤ n+1
2
,

where f1 = A1e1 + A2e2, f2 = B1e1 +B2e2.
If A1 6= 0, then we have

[f1, x1] = f1,

[f2, x2] = f2,

[yi, f1] = A1yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1(α1f1 + α2f2), 1 ≤ i ≤ n+1
2
.

If A1 = 0, then we get B1 6= 0, and obtain

[f1, x1] = f1,

[f2, x2] = f2,

[yi, f2] = B1yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1(α1f1 + α2f2), 1 ≤ i ≤ n+1
2
.

In the second case, making the change f ′1 = f2, f
′
2 = f1, x

′
1 = x2, x

′
2 = x1, we

have the first case. Thus, we can always assume A1 6= 0, more exactly A1 = 1.
Put

[y1, x1] = a1y1 + a2y2 + · · ·+ anyn,

[y1, x2] = b1y1 + b2y2 + · · ·+ bnyn.

Using the Leibniz superidentity, we obtain that

[yi, x1] = (a1 + i− 1)yi + a2yi+1 + · · ·+ an+1−iyn, 1 ≤ i ≤ n,

[yi, x2] = b1yi + b2yi+1 + · · ·+ bn−i+1yn, 1 ≤ i ≤ n.

Consider
[x1, [yn+1

2
, yn+1

2
]] = 2[[x1, yn+1

2
], yn+1

2
] =

= −2[(a1 +
n+ 1

2
− 1)yn+1

2
+ a2yn+1

2
+1 + · · ·+ an+1

2
yn, yn+1

2
] =

= 2(−1)
n+1
2 (a1 +

n+ 1

2
− 1)(α1f1 + α2f2).

On the other hand,

[x1, [yn+1
2
, yn+1

2
]] = [x1, (−1)

n+1
2

+1(α1f1 + α2f2)] = (−1)
n+1
2 α1f1,

14
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which implies
(2a1 + n− 2)α1 = 0, (2a1 + n− 1)α2 = 0.

Since α2 6= 0, we have a1 = 1−n
2

and α1 = 0.
Similarly, considering the equality [x2, [yn+1

2
, yn+1

2
]] = 2[[x2, yn+1

2
], yn+1

2
], we have

b1 =
1
2
.

Thus, we obtain following multiplications

[f1, x1] = f1,

[f2, x2] = f2,

[yi, f1] = yi+1, 1 ≤ i ≤ n− 1,

[yn+1−i, yi] = (−1)i+1α2f2, 1 ≤ i ≤ n+1
2
,

[yi, x1] = (i− 1+n
2
)yi + a2yi+1 + · · ·+ an+1−iyn, 1 ≤ i ≤ n.

[yi, x2] =
1
2
yi + b2yi+1 + · · ·+ bn−i+1yn, 1 ≤ i ≤ n.

Moreover, making the change f ′2 = α2f2, we can suppose α2 = 1.
Now, we consider Leibniz superidentity for the triples [x1, [yi, yi]] and [x2, [yi, yi]]

when 1 ≤ i ≤ n−1
2
. Then we have

0 = [x1, [yi, yi]] = 2[[x1, yi], yi] = (−1)i+12an−2(i−1)e2,

0 = [x2, [yi, yi]] = 2[[x2, yi], yi] = (−1)i+12bn−2(i−1)e2,

which implies

a2i+1 = 0, b2i+1 = 0, 1 ≤ i ≤ n− 1

2
.

Making the change of basis

e′1 = e1, e′2 = e2, x′1 = x1, x′2 = x2,

y′i = yi +
n+1−i∑
j=2

Ajyi+j−1, 1 ≤ i ≤ n,

with

A2k =
1

2k − 1
a2k +

1

2k − 1

k∑
j=2

A2(k−j)+3a2j−2,

A2k+1 =
1

2k

k∑
j=1

A2(k−j)+2a2j,

we obtain that
a2k = 0, 1 ≤ k ≤ n− 1

2
.

Now consider

[x1, [x2, y1]] = [[x1, x2], y1]− [[x1, y1], x2] =
1− n
2

[y1, x2] =

15
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=
1− n
2

(1
2
y1 + b2y2 + b4y4 + · · ·+ bn−1yn−1

)
.

On the other hand,

[x1, [x2, y1]] = −[x1,
1

2
y1 + b2y2 + b4y4 + · · ·+ bn−1yn] =

=
1− n
4

y1 +
3− n
2

b2y2 +
5− n
2

b4y4 + · · ·+
n− 3

2
bn−1yn−1.

From this equalities, we obtain

b2k = 0, 1 ≤ k ≤ n− 1

2
.

Thus, we obtain the algebra M4.
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