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a b s t r a c t

In this paper we describe the infinitesimal deformations of null-filiform Leibniz
superalgebras over a field of zero characteristic. It is known that up to isomorphism in
each dimension there exist two such superalgebras NF n,m. One of them is a Leibniz algebra
(that is m = 0) and the second one is a pure Leibniz superalgebra (that is m ≠ 0) of
maximum nilindex. We show that the closure of the union of orbits of single-generated
Leibniz algebras forms an irreducible component of the variety of Leibniz algebras. We
prove that any single-generated Leibniz algebra is a linear integrable deformation of the
algebra NF n. Similar results for the case of Leibniz superalgebras are obtained.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Deforming a given mathematical structure is a tool of fundamental importance in most parts of mathematics,
mathematical physics and physics. Deformations and contractions have been investigated by researchers who had different
approaches and goals. Tools such as cohomology, gradings, etc. which are utilized in the study of one concept are likely to
be useful for the other concept as well.

The theory of deformations originated with the problem of classifying all possible pairwise non-isomorphic complex
structures on a given differentiable real manifold. Formal deformations of arbitrary rings and associative algebras, and
related cohomology questions, were first investigated by Gerstenhaber [1]. Later, the notion of deformation was applied to
Lie algebras by Nijenhuis and Richardson [2]. Because various fields inmathematics and physics exist inwhich deformations
are used, we focus on the study of Leibniz superalgebras. One-parameter deformations were studied and established
connection between Lie algebra cohomology and infinitesimal deformations.

Deformation is one of the tools used to study a specific object, by deforming it into some families of ‘‘similar’’ structure
objects. This way we get a richer picture about the original object itself [3]. But there is also another question approached
via deformation. Roughly speaking, it is the question: can we equip the set of mathematical structures under consideration
(may be up to certain equivalence) with the structure of a topological or geometric space.
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The theory of deformations is one of the effective approaches in investigating solvable and nilpotent Lie algebras and
superalgebras [4–7], etc.

Recall that Leibniz algebras are a generalization of Lie algebras [8,9] and it is natural to apply the theory of deformations
to the study of Leibniz algebras. Particularly, the problems which were studied in [4,7] and others can be considered from
point of Leibniz algebras view. Due to a results of [10] we can apply the general principles of deformations theory to Leibniz
algebras.

It is well known that Lie superalgebras are a generalization of Lie algebras. In the sameway, the notion of Leibniz algebra
can be generalized to Leibniz superalgebras. Lie superalgebras with maximal nilindex were classified in [11]. In fact, there
exists a unique Lie superalgebra of maximal nilindex. This superalgebra is a filiform Lie superalgebra. For nilpotent Leibniz
superalgebras the description of the maximal nilindex case (nilpotent Leibniz superalgebras distinguished by the feature of
being single-generated) was easily done in [12].

Let V = V0 ⊕ V1 be the underlying vector space of the Leibniz superalgebra L = L0 ⊕ L1 of dimension n + m (where n
and m are dimensions of L0 and L1, respectively) and let GL(V ) be the group of the invertible linear mappings of the form
f = f0 + f1 such that f0 ∈ GLn(F) and f1 ∈ GLm(F) (where GL(V ) = GLn(F)⊕ GLm(F)). The action of the group GL(V ) on the
variety of Leibniz superalgebras induces an action on the Leibniz superalgebras’ variety: two lawsµ1 andµ2 are isomorphic
if there exists a linear mapping f , f = f0 + f1 ∈ GL(V ), such that

µ2(x, y) = f −1
α+β(µ1(fα(x), fβ(y))) for all x ∈ Vα, y ∈ Vβ , α, β ∈ Z2.

The orbit under this action, denoted by Orb(µ), consists of all superalgebras isomorphic to the superalgebra µ. Therefore
the description of (n+m)-dimensional superalgebras with dimensions of even and odd parts equal to n andm, respectively
(further denoted by Leibn,m) can be reduced to a geometric problem of classification of orbits under the action of the group
GL(V ). Note that nilpotent Leibniz superalgebrasNn,m formalso an invariant subvariety of the variety Leibn,m under the above
action. Fromalgebraic geometry it is known that an algebraic variety is a union of irreducible components. The superalgebras
with open orbits in the variety of Leibniz superalgebras are called rigid. The closures of these open orbits give irreducible
components of the variety. Therefore studying the rigid superalgebras is a crucial problem from the geometrical point of
view. The problem of finding such algebras is crucial for the description of the variety Leibn,m.

The structure of the paper is as follows: in the section Preliminaries we give the necessary definitions and results for
understanding the main parts of this paper. In Section 3 we calculate the second group of cohomology of the null-filiform
Leibniz algebra and show that the set of single-generated Leibniz algebras forms an irreducible component of the variety of
Leibniz algebras. Moreover, it is established that any single-generated algebra is a linear integrable deformation of the null-
filiform algebra. In the last section we extend the calculations of the previous section for the case of Leibniz superalgebras.

Throughout the paper we consider finite-dimensional vector spaces and superalgebras over a field of zero characteristic.
Moreover, in the multiplication table of a Leibniz superalgebra the omitted products and in the expansion of 2-cocycles the
omitted values are assumed to be zero.

2. Preliminaries

In this section we give necessary definitions and results for understanding the main parts of the work.

Definition 2.1 ([12]). A Z2-graded vector space L = L0 ⊕ L1 is called a Leibniz superalgebra if it is equipped with a product
[−,−] which satisfies the following conditions:

[x, [y, z]] = [[x, y], z] − (−1)|y| |z|[[x, z], y]-Leibniz superidentity

for all x ∈ L, y ∈ L|y|, z ∈ L|z|.

Let L be a Leibniz superalgebra. We call a Z2-graded vector spaceM = M0 ⊕M1 a module over L if there are two bilinear
maps

[−,−] : L × M → M and [−,−] : M × L → M

satisfying the following three axioms:

[m, [x, y]] = [[m, x], y] − (−1)|x| |y|[[m, y], x],
[x, [m, y]] = [[x,m], y] − (−1)|y| |m|

[[x, y],m],

[x, [y,m]] = [[x, y],m] − (−1)|m| |y|
[[x,m], y],

for any m ∈ M|m|, x ∈ L|x|, y ∈ L|y|.
Given a Leibniz superalgebra L, let Cn(L,M) be the space of all super skew-symmetric F-linear homogeneous mapping

L⊗n
→ M, n ≥ 0 and C0(L,M) = M . This space is graded by Cn(L,M) = Cn

0 (L,M)⊕ Cn
1 (L,M)with

Cn
p (L,M) =


n0+n1=n

n1+r≡p mod 2

Hom(L⊗n0
0 ⊗ L⊗n1

1 ,Mr).
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Let dn : Cn(L,M) → Cn+1(L,M) be an F-homomorphism defined by

(dnf )(x1, . . . , xn+1) := [x1, f (x2, . . . , xn+1)] +

n+1
i=2

(−1)i+|xi|(|f |+|xi+1|+···+|xn+1|)[f (x1, . . . ,xi, . . . , xn+1), xi]

+


1≤i<j≤n+1

(−1)j+1+|xj|(|xi+1|+···+|xj−1|)f (x1, . . . , xi−1, [xi, xj], xi+1, . . . ,xj, . . . , xn+1),

where f ∈ Cn(L,M) and xi ∈ L. Since the derivative operator d =


i≥0 d
i satisfies the property d ◦ d = 0, the cohomology

group is well defined and
HLnp(L,M) = ZLnp(L,M)/BL

n
p(L,M),

where the elements ZLn0(L,M) (BL
n
0(L,M)) and ZLn1(L,M) (BL

n
1(L,M)) are called even n-cocycles (even n-coboundaries) and odd

n-cocycles (odd n-coboundaries), respectively.
It is a remarkable fact that the formula for dn can be obtained from the derivative operator for color Leibniz algebras [13].
Note that the space ZL1(L, L) consists of derivations of the superalgebra L, which are defined by the condition

d([x, y]) = (−1)|d| |y|[d(x), y] + [x, d(y)].
For a given x ∈ L, Rx denotes the map Rx : L → L such that Rx(y) = [y, x], ∀x ∈ L. Note that the map Rx is a derivation.
A deformation of a Leibniz superalgebra L is a one-parameter family Lt of Leibniz superalgebras with the bracket
µt = µ0 + tϕ1 + t2ϕ2 + · · · ,

with µ0 being the original Leibniz bracket on L and ϕi are L-valued even 2-cochains, i.e., elements of Hom(L ⊗ L, L)0 =

C2(L, L)0.
Two deformations Lt , L′

t with corresponding laws µt , µ
′
t are equivalent if there exists a linear automorphism ft =

id + f1t + f2t2 + · · · of L, where fi are elements of C1(L, L)0 such that the following equation holds:
µ′

t(x, y) = f −1
t (µt(ft(x), ft(y))) for x, y ∈ L.

The Leibniz superidentity for the superalgebras Lt implies that the 2-cochain ϕ1 is an even 2-cocycle, i.e. d2ϕ1 = 0. If ϕ1
vanishes identically, the first non-vanishing ϕi will be a 2-cocycle.

Ifµ′
t is an equivalent deformation with cochains ϕ′

i , then ϕ
′

1 − ϕ1 = d1f1; hence every equivalence class of deformations
defines uniquely an element of HL2(L, L)0.

Note that the linear integrable deformation ϕ satisfies the condition

ϕ(x, ϕ(y, z))− ϕ(ϕ(x, y), z)+ (−1)|y| |z|ϕ(ϕ(x, z), y) = 0. (2.1)
It should be noted that a Leibniz algebra is a superalgebra with trivial odd part and the definition of cohomology groups

of Leibniz superalgebras extends the definition of cohomology groups of Leibniz algebras given in [9].
For a Leibniz superalgebra L consider the following central lower series:

L1 = L, Lk+1
= [Lk, L1], k ≥ 1.

Definition 2.2. A Leibniz superalgebra L is said to be nilpotent if there exists p ∈ N such that Lp = 0.
Now we give the notion of null-filiform Leibniz superalgebra.

Definition 2.3. An n-dimensional Leibniz superalgebra is said to be null-filiform if dim Li = n + 1 − i, 1 ≤ i ≤ n + 1.
Similarly to the case of nilpotent Leibniz algebras [14] it is easy to check that a Leibniz superalgebra is null-filiform if and

only if it is single-generated. Moreover, a null-filiform superalgebra has the maximal nilindex.

Theorem 2.4 ([12]). Let L be a null-filiform Leibniz superalgebra of the variety Leibn,m. Then L is isomorphic to one of the following
non-isomorphic superalgebras:

NF n
: [xi, x1] = xi+1, 1 ≤ i ≤ n − 1; NF n,m

:


[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] =
1
2
yi+1, 1 ≤ i ≤ m − 1,

[yj, x1] = yj+1, 1 ≤ j ≤ m − 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n − 1.

where {x1, x2, . . . , xn} and {y1, y2, . . . , ym} are bases of the even and odd parts, respectively.

Remark 2.5. Note that the first superalgebra is a null-filiform Leibniz algebra [14] and from the assertion of Theorem 2.4we
conclude that in the case of non-trivial odd part of the null-filiform Leibniz superalgebra NF n,m there are two possibilities
form, namelym = n orm = n + 1.

3. Deformations of the null-filiform Leibniz algebra

In this section we calculate infinitesimal deformations of the algebra NF n andwe show that any single-generated Leibniz
algebra is a linear integrable deformation of NF n.
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Note that any derivation of the null-filiform Leibniz algebra NF n has the following form [15]:
a1 a2 a3 · · · an
0 2a1 a2 · · · an−1
0 0 3a1 · · · an−2
...

...
... · · ·

...
0 0 0 · · · na1

 .
From this we conclude that dim BL2(NF n,NF n) = n2

− n.
In general, a 2-cocycle is a bilinear map from NF n

⊗ NF n to NF n such that d2ϕ = 0, i.e.,

d2ϕ(x, y, z) = [x, ϕ(y, z)] − [ϕ(x, y), z] + [ϕ(x, z), y] + ϕ(x, [y, z])− ϕ([x, y], z)+ ϕ([x, z], y).

Proposition 3.1. The following cochains

ϕj,k(xj, x1) = xk, 1 ≤ j ≤ n, 2 ≤ k ≤ n,

ψj (1 ≤ j ≤ n − 1) =


ψj(xj, x1) = x1,
ψj(xi, xj+1) = −xi+1, 1 ≤ i ≤ n − 1,

form a basis of ZL2(NF n,NF n).

Proof. Using the Leibniz 2-cocycle property (d2ϕ)(xi, x1, x1) = 0, we have

ϕ(xi, x2) = −[xi, ϕ(x1, x1)], 1 ≤ i ≤ n − 1, ϕ(xn, x2) = 0. (3.1)

The conditions (d2ϕ)(xi, x1, xj) = 0, (d2ϕ)(xi, xj, x1) = 0 for 1 ≤ i ≤ n, 2 ≤ j ≤ n imply

[xi, ϕ(x1, xj)] + [ϕ(xi, xj), x1] − ϕ([xi, x1], xj) = 0,
[xi, ϕ(xj, x1)] − [ϕ(xi, xj), x1] + ϕ(xi, [xj, x1])+ ϕ([xi, x1], xj) = 0.

Summarizing the above equalities, we derive
ϕ(xi, xj+1) = −[xi, ϕ(x1, xj)+ ϕ(xj, x1)], 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n − 1,
ϕ(xn, xj+1) = 0, 2 ≤ j ≤ n − 1,
[xi, ϕ(x1, xn)+ ϕ(xn, x1)] = 0, 1 ≤ i ≤ n.

(3.2)

Set ϕ(xj, x1) =
n

k=1 aj,kxk for 1 ≤ i ≤ n.
Using inductively method from equalities (3.1) and (3.2) we get an,1 = 0 and

ϕ(xi, xj+1) = −aj,1xi+1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1.

Therefore, we obtain that any infinitesimal deformation of NF n has the following form:
ϕ(xj, x1) = aj,1x1 + aj,2x2 + · · · + aj,nxn, 1 ≤ j ≤ n − 1
ϕ(xn, x1) = an,2x2 + · · · + an,nxn,
ϕ(xi, xj+1) = −aj,1xi+1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1.

Therefore, ϕj,k and ψj form a basis of ZL2(NF n,NF n). �

Corollary 3.2. dim(ZL2(NF n,NF n)) = n2
− 1.

Below, we describe a basis of the subspace BL2(NF n,NF n) in terms of ϕj,k and ψj.

Proposition 3.3. The cocycles

ξj,k


ξj,1 = ψj−1 − ϕj,2, 2 ≤ j ≤ n,
ξj,k = ϕj−1,k, 2 ≤ j ≤ k ≤ n,
ξj,k = ϕj−1,k − ϕj,k+1, 2 ≤ k < j ≤ n

form a basis of BL2(NF n,NF n).

Proof. Consider the endomorphisms fj,k defined as follows:

fj,k(xj) = xk, 2 ≤ j ≤ n, 1 ≤ k ≤ n.

It is easy to see that fj,k are complement of derivations toC1(NF n,NF n). Therefore, the elements of the spaceBL2(NF n,NF n)

are d1fj,k such that d1fj,k = fj,k([x, y])− [fj,k(x), y] − [x, fj,k(y)].
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Then we obtain

d1fj,1 (2 ≤ j ≤ n) =

d1fj,1(xj−1, x1) = x1,
d1fj,1(xj, x1) = −x2,
d1fj,1(xi, xj) = −xi+1, 2 ≤ i ≤ n − 1,

d1fj,k


2 ≤ j ≤ n,

2 ≤ k ≤ n − 1


=


d1fj,k(xj−1, x1) = xk,
d1fj,k(xj, x1) = −xk+1,

d1fk,n (2 ≤ k ≤ n) = {d1fk,n(xk−1, x1) = xn.

It should be noted thatd1fj,1 = ψj−1 − ϕj,2 2 ≤ j ≤ n,
d1fj,k = ϕj−1,k − ϕj,k+1, 2 ≤ j ≤ n, 2 ≤ k ≤ n − 1,
d1fj,n = ϕj−1,n, 2 ≤ j ≤ n.

From the condition d1fk,s + d1fk+1,s+1 + · · · + d1fn+k−s,n = ϕk−1,s for 2 ≤ k ≤ s ≤ n, we conclude that the maps
ξk,s, 2 ≤ k ≤ n, 1 ≤ s ≤ n, form a basis of BL2(NF n,NF n). �

Corollary 3.4. The classes ϕn,k (2 ≤ k ≤ n) form a basis of HL2(NF n,NF n). Consequently, dimHL2(NF n,NF n) = n − 1.

In the following proposition we describe infinitesimal deformations of NF n satisfying the equality (2.1).

Proposition 3.5. A 2-cocycle of NF n satisfies the equality (2.1) if and only if it has the form
j,k

aj,kϕj,k.

Proof. It is easy to check that 2-cocycles of the form


j,k aj,kϕj,k satisfy the equality (2.1).
If ϕ ∈ ZL2(NF n,NF n), then ϕ =


j,k aj,kϕk,s +

n−1
j=1 bjψk.

From the condition

ϕ(x1, ϕ(x1, x1))− ϕ(ϕ(x1, x1), x1)+ ϕ(ϕ(x1, x1), x1) = 0,

we get b1 = 0.
The following chain of equalities

ϕ(xi, ϕ(xj, xj+1))− ϕ(ϕ(xi, xj), xj+1)+ ϕ(ϕ(xi, xj+1), xj)
= ϕ(xi, ψj(xj, xj+1))− ϕ(ψj−1(xi, xj), xj+1)+ ϕ(ψj(xi, xj+1), xj)
= −ψj(xi, bjxj+1)+ ψj(bj−1xi+1, xj+1)− ψj−1(bjxi+1, xj)

= b2j xi+1 − bjbj−1xi+2 + bjbj−1xi+2 = b2j xi+1

implies bj = 0, 2 ≤ j ≤ n − 1. �

Consider the linear integrable deformations µt = NF n
+ t


j,k aj,kϕj,k of NF n.

Since every non-trivial equivalence class of deformations defines uniquely an element of HL2(L, L), due to Corollary 3.4
it is sufficient to consider µt(a2, a3, . . . , an) = NF n

+ t
n

k=2 akϕn,k, where (a2, a3, . . . , an) ≠ (0, 0, . . . , 0).
Thus, the multiplication table of µt(a2, a3, . . . , an) has the form

[xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

[xn, x1] = t
n

k=2

akxk.

Putting a′

k = tak, we can assume t = 1.

Proposition 3.6. An arbitrary single-generated Leibniz algebra admits a basis {x1, x2, . . . , xn} such that the multiplication table
has the form of µ1(a2, a3, . . . , an).

Proof. Let L be a single-generated Leibniz algebra and x a generator of L. We put

x1 = x, x2 = [x, x], x3 = [[x, x], x], . . . , xn = [[x, x], . . . , x].

Since x is a generator, {x1, x2, . . . , xn} form a basis of L. Evidently {x2, . . . , xn} belong to the right annihilator of L. Hence,
we have [xi, xj] = 0, 2 ≤ j ≤ n − 1. Let [xn, x1] =

n
k=1 akxk.

From the Leibniz identity [x1, [xn, x1]] = [[x1, xn], x1]− [[x1, xn], x1] = 0, we conclude that a1 = 0. Therefore, we obtain
the existence of a basis {x1, x2, . . . , xn} in any single-generated Leibniz algebra such that the multiplication table in this
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basis has the form
[xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

[xn, x1] =

n
k=2

akxk. �

Let aj be the first non-vanishing parameter in the algebra µ(a2, a3, . . . , an); then by scaling x′

i =
1

n−j+1

aij
xi, 1 ≤ i ≤ n,

we can assume aj = 1, i.e., the first non-vanishing parameter can be taken equal to 1.
Note that the set of single-generated Leibniz algebras is open. Indeed, if a q-generated (q > 1) Leibniz algebra has a basis

{e1, e2, . . . , en}, then for any ei ∈ L the elements ei, e2i , . . . , e
n
i are linearly dependent. That is, determinants of the matrices

Ai, 1 ≤ i ≤ n, which consist of the rows ei, e2i , . . . , e
n
i are zero; hence we get n-times of polynomials with structure

constants of the algebra. Therefore, q-generated (q > 1) Leibniz algebras form a closed set. Taking into account that the set
of all single-generated Leibniz algebras is a complemented set to a closed set, we conclude that the set of single-generated
Leibniz algebras is open.

It is easy to see that an algebra µ1(a2, a3, . . . , an) is a linear deformation of an algebra µ1(a′

2, a
′

3, . . . , a
′
n).

Since dim(Der(µ1(a2, a3, . . . , an))) = n − 1, (a2, a3, . . . , an) ≠ (0, 0, . . . , 0), then by arguments used in [16] for non-
isomorphic algebras µ1(a2, a3, . . . , an) and µ1(a′

2, a
′

3, . . . , a
′
n)we derive µ1(a2, a3, . . . , an) ∉ Orb(µ1(a′

2, a
′

3, . . . , a′
n)).

Summarizing these results on single-generated Leibniz algebras, we obtain the following theorem.

Theorem 3.7.


a2,...,an
Orb(µ1(a2, a3, . . . , an)) is an irreducible component.

4. Cohomology of Leibniz superalgebras

In this section we describe all infinitesimal deformations of the Leibniz superalgebra NF n,m and we prove similar results
as in the previous section.

In the next proposition the description of even derivations of NF n,m is given.

Proposition 4.1. Any derivation of Der(NF n,m)0 has the form

d(yj) = (2j − 1)a1yj +
m+1−j
k=2

akyj+k−1, 1 ≤ j ≤ m,

d(xi) = 2ia1xi +
n+1−i
k=2

aixi+k−1, 1 ≤ i ≤ n,

where m = n or m = n + 1.

Proof. For d ∈ Der(NF n,m)0 we put d(y1) =
m

k=1 akyk. Then using the properties of derivation and multiplication in the
superalgebra NF n,m we obtain d(x1) = 2a1x1 +

n
k=2 akxk.

Using induction, we deduce

d(yj+1) = [d(yj), x1] + [yj, d(x1)] = (2j + 1)a1yj+1 +

m−j
k=2

akyj+k,

d(xi) = [d(yi), y1] + [yi, d(y1)] = 2ia1xi +
n+1−i
k=2

akxi+k−1.

The verification of the derivation property on other elements does not give any additional restriction on d. �

Similarly, we describe odd derivations of Der(NF n,m).

Proposition 4.2. Any derivation of Der(NF n,m)1 has the form

d(yj) =

n+1−j
k=1

bkxj+k−1, 1 ≤ j ≤ n,

d(xi) =
1
2


b1yi+1 −

m−i
k=2

bkxi+k


, 1 ≤ i ≤ m − 1,

where m = n or m = n + 1.

Nowwe shall consider infinitesimal deformations of the superalgebraNF n,m, i.e., elements of the space ZL20(NF
n,m,NF n,m).
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4.1. The case m = n

In this case we give the description of the infinitesimal deformations of the superalgebra NF n,n.

Proposition 4.3. An arbitrary infinitesimal deformation ϕ of NF n,n has the following form:

ϕ(yj, y1) =

n
k=1

αj,kxk, 1 ≤ j ≤ n,

ϕ(xj, y1) =

n
k=1

βj,kyk, 1 ≤ j ≤ n − 1,

ϕ(xn, y1) =

n
k=2

βn,kyk,

ϕ(xj, x1) = −α1,1xi+1 +

n
k=1

(αj+1,k + 2βj,k)xk, 1 ≤ j ≤ n − 1,

ϕ(xn, x1) = 2
n

k=2

βn,kxk,

ϕ(yj, x1) = 2βj,1y1 − α1,1yj+1 +

n
k=2

(αj,k−1 + 2βj,k)yk, 1 ≤ j ≤ n − 1,

ϕ(yn, x1) =

n
k=2

(αn,k−1 + 2βn,k)yk,

ϕ(xi, xj+1) = −(αj+1,1 + 2βj,1)xi+1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1,
ϕ(yi, xj+1) = −(αj+1,1 + 2βj,1)yi+1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1,
ϕ(xi, yj+1) = −βj,1yi+1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1,
ϕ(yi, yj+1) = −2βj,1xi, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1.

Proof. Let ϕ ∈ ZL20(NF
n,n,NF n,n). We set

ϕ(yj, y1) =

n
k=1

αj,kxk, ϕ(xj, y1) =

n
k=1

βj,kyk, 1 ≤ j ≤ n.

Applying the multiplication of the superalgebra and the property of cocycle for d2ϕ(xj, y1, y1) = 0, we obtain

ϕ(xj, x1) = −α1,1xj+1 +

n
k=2

(αj+1,k−1 + 2βj,k)xk, 1 ≤ j ≤ n − 1, ϕ(xn, x1) = 2
n

k=1

βn,kxk.

Analogously, from d2ϕ(yj, y1, y1) = 0 we get

ϕ(yj, x1) = 2βj,1y1 − α1,1yj+1 +

n
k=2

(αj,k−1 + 2βj,k)yk, 1 ≤ j ≤ n.

The equations d2ϕ(xi, x1, x1) = 0 and d2ϕ(yi, x1, x1) = 0 imply

ϕ(xi, x2) = −[xi, ϕ(x1, x1)] = −(α2,1 + 2β1,1)xi+1, 1 ≤ i ≤ n − 1,
ϕ(yi, x2) = −[yi, ϕ(x1, x1)] = −(α2,1 + 2β1,1)yi+1, 1 ≤ i ≤ n − 1.

Using the conditions d2ϕ(xi, x1, xj) = 0 and d2ϕ(xi, xj, x1) = 0 for 1 ≤ i ≤ n, 2 ≤ j ≤ n, we derive

[xi, ϕ(x1, xj)] + [ϕ(xi, xj), x1] − ϕ([xi, x1], xj) = 0,
[xi, ϕ(xj, x1)] − [ϕ(xi, xj), x1] + ϕ(xi, [xj, x1])+ ϕ([xi, x1], xj) = 0.

Summarizing these equalities, we deduce

ϕ(xi, xj+1) = −[xi, ϕ(x1, xj)+ ϕ(xj, x1)] = −(αj+1,1 + 2βj,1)xi+1, 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n − 1,

and 0 = [xi, ϕ(x1, xn)+ ϕ(xn, x1)] = βn,1yi+1, which implies βn,1 = 0.
Similarly from d2ϕ(yi, x1, xj) = 0 and d2ϕ(yi, xj, x1) = 0 we obtain

ϕ(yi, xj+1) = −(αj+1,1 + 2βj,1)yi+1, 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n − 1.
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Considering the properties (d2ϕ)(xi, y1, xj) = 0 and (d2ϕ)(xi, xj, y1) = 0 for 1 ≤ i, j ≤ n, we have

[xi, ϕ(y1, xj)] − [ϕ(xi, y1), xj] + [ϕ(xi, xj), y1] + ϕ(xi, [y1, xj])− ϕ([xi, y1], xj)+ ϕ([xi, xj], y1) = 0,
[xi, ϕ(xj, y1)] − [ϕ(xi, xj), y1] + [ϕ(xi, y1), xj] + ϕ(xi, [xj, y1])− ϕ([xi, xj], y1)+ ϕ([xi, y1], xj) = 0.

Again, summarizing these equalities, we get ϕ(xi, [y1, xj] + [xj, y1]) = −[xi, ϕ(y1, xj)+ ϕ(xj, y1)], from which we have

ϕ(xi, y2) = −
2
3
[xi, ϕ(y1, x1)+ ϕ(x1, y1)] = −β1,1yi+1, 1 ≤ i ≤ n − 1,

ϕ(xi, yj+1) = −2[xi, ϕ(y1, xj)+ ϕ(xj, y1)] = −β1,1yi+1, 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n − 1.

Applying the above arguments to the equalities (d2ϕ)(yi, y1, xj) = 0 and (d2ϕ)(yi, xj, y1) = 0 for 1 ≤ i, j ≤ n, we get

ϕ(yi, yj+1) = −2βj,1xi, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1.

Checking the general condition of cocycle for the other basis elements we get the already obtained restrictions. �

Using the assertion of Proposition 4.3 we indicate a basis of the space ZL20(NF
n,n,NF n,n).

Theorem 4.4. The following cochains ϕj,k,, ψj,k

ϕ1,1 :


ϕ1,1(y1, y1) = x1,
ϕ1,1(xi, x1) = −xi+1, 1 ≤ i ≤ n − 1,
ϕ1,1(yi, x1) = −yi+1, 2 ≤ i ≤ n − 1,

ϕj,1(2 ≤ j ≤ n) :


ϕj,1(yj, y1) = x1,
ϕj,1(xj−1, x1) = x1,
ϕj,1(yj, x1) = y2,
ϕj,1(xi, xj) = −xi+1, 1 ≤ i ≤ n − 1,
ϕj,1(yi, xj) = −yi+1, 1 ≤ i ≤ n − 1,

ϕ1,k(2 ≤ k ≤ n − 1) :


ϕ1,k(y1, y1) = xk,
ϕ1,k(y1, x1) = yk+1,

ϕ1,n :

ϕ1,n(y1, y1) = xn.

ϕj,k


2 ≤ j ≤ n,

2 ≤ k ≤ n − 1


:


ϕj,k(yj, y1) = xk,
ϕj,k(xj−1, x1) = xk,
ϕj,k(yj, x1) = yk+1,

ϕj,n(2 ≤ j ≤ n) :


ϕj,n(yj, y1) = xn,
ϕj,n(xj−1, x1) = xn,

ψj,1 (1 ≤ j ≤ n − 1) :



ψj,1(xj, y1) = y1,
ψj,1(xj, x1) = 2x1,
ψj,1(yj, x1) = 2y1,
ψj,1(xi, xj+1) = −2xi+1, 1 ≤ i ≤ n − 1,
ψj,1(yi, xj+1) = −2yi+1, 1 ≤ i ≤ n − 1,
ψj,1(xi, yj+1) = −yi+1, 1 ≤ i ≤ n − 1,
ψj,1(yi, yj+1) = −2xi, 1 ≤ i ≤ n,

ψj,k


1 ≤ j ≤ n,
2 ≤ k ≤ n


:


ψj,k(xj, y1) = yk,
ψj,k(xj, x1) = 2xk,
ψj,k(yj, x1) = 2yk.

form a basis of the space ZL20(NF
n,n,NF n,n).

Applying the same arguments as used in the proof of Proposition 3.3 we prove the following result.

Proposition 4.5. The 2-cochains ξj,k and ζj,k defined as follows

ξj,k = ϕj,k, 1 ≤ j ≤ n, j ≤ k ≤ n,

ξj,k = ϕj,k −
1
2
ψj,k+1, 2 ≤ j ≤ n, 1 ≤ k ≤ j − 1,

ζj,k = ψj−1,k, 2 ≤ j ≤ n, j ≤ k ≤ n,

ζj,k =
1
2
ψj−1,k − ϕj,k, 2 ≤ j ≤ n, 1 ≤ k ≤ j − 1,

form a basis of BL20(NF
n,n,NF n,n).

Corollary 4.6. {ψn,2, ψn,3, . . . , ψn,n} form a basis of HL20(NF
n,NF n).

Consequently,

dim ZL20(NF
n,n,NF n,n) = 2n2

− 1,

dim BL20(NF
n,n,NF n,n) = 2n2

− n,

dimHL20(NF
n,NF n) = n − 1.



378 A.Kh. Khudoyberdiyev, B.A. Omirov / Journal of Geometry and Physics 74 (2013) 370–380

In the next proposition we clarify that the basis element of ZL20(NF
n,n,NF n,n) satisfies the condition (2.1).

Proposition 4.7. The infinitesimal deformations ϕj,k (1 ≤ j ≤ n, 2 ≤ k ≤ n) and ψj,k (1 ≤ j ≤ n, 2 ≤ k ≤ n) satisfy the
condition (2.1), but the 2-cocycles ϕj,1 (1 ≤ j ≤ n) and ψj,1 (1 ≤ j ≤ n − 1) do not satisfy the condition (2.1).

Proof. The proof of this proposition is carried out by applying similar arguments as in the proof of Proposition 3.5. �

4.2. The case m = n + 1

The results of this case we give without proofs since they can be easily proven similarly to those of case above.

Proposition 4.8. Any 2-cocycle ϕ ∈ ZL20(NF
n,n+1,NF n,n+1) has the following form:

ϕ(yj, y1) =

n
k=1

αj,kxk, 1 ≤ j ≤ n + 1,

ϕ(xj, y1) =

n+1
k=1

βj,kyk, 1 ≤ j ≤ n − 1,

ϕ(xn, y1) = −
αn+1,1

2
y1 +

n
k=2

βn,kyk,

ϕ(xj, x1) = −α1,1xi+1 +

n
k=1

(αj+1,k + 2βj,k)xk, 1 ≤ j ≤ n − 1,

ϕ(xn, x1) =

n
k=2

(αn+1,k + 2βn,k)xk,

ϕ(yj, x1) = 2βj,1y1 − α1,1yj+1 +

n+1
k=2

(αj,k−1 + 2βj,k)yk, 1 ≤ j ≤ n − 1,

ϕ(yn, x1) = αn+1,1y1 − α1,1yn+1 +

n+1
k=2

(αn,k−1 + 2βn,k)yk,

ϕ(yn+1, x1) =

n+1
k=2

αn+1,k−1yk,

ϕ(xi, xj+1) = −(αj+1,1 + 2βj,1)xi+1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1,
ϕ(yi, xj+1) = −(αj+1,1 + 2βj,1)yi+1, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1,
ϕ(xi, yj+1) = −βj,1yi+1, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1,
ϕ(xi, yn+1) = −

αn+1,1

2
yi+1, 1 ≤ i ≤ n,

ϕ(yi, yj+1) = −2βj,1xi, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1,
ϕ(yi, yn+1) = −αn+1,1xi, 1 ≤ i ≤ n.

Using the assertion of Proposition 4.8 we indicate a basis of the space ZL20(NF
n,n+1,NF n,n+1).

Theorem 4.9. The following cochains ϕj,k,, ψj,k

ϕ1,1 :


ϕ1,1(y1, y1) = x1,
ϕ1,1(xi, x1) = −xi+1, 1 ≤ i ≤ n − 1,
ϕ1,1(yi, x1) = −yi+1, 2 ≤ i ≤ n,

ϕj,1(2 ≤ j ≤ n) :


ϕj,1(yj, y1) = x1,
ϕj,1(xj−1, x1) = x1,
ϕj,1(yj, x1) = y2,
ϕj,1(xi, xj) = −xi+1, 1 ≤ i ≤ n − 1,
ϕ1,1(yi, xj) = −yi+1, 1 ≤ i ≤ n,

ϕn+1,1 :



ϕn+1,1(yn+1, y1) = x1,

ϕn+1,1(xn, y1) = −
1
2
y1,

ϕn+1,1(yn, x1) = −y1,
ϕn+1,1(yn+1, x1) = y2,

ϕn+1,1(xi, yn+1) = −
1
2
yi+1, 1 ≤ i ≤ n,

ϕn+1,1(yi, yn+1) = −xi, 1 ≤ i ≤ n,
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ϕ1,k(2 ≤ k ≤ n) :


ϕ1,k(y1, y1) = xk,
ϕ1,k(y1, x1) = yk+1,

ϕj,k


2 ≤ j ≤ n + 1,

2 ≤ k ≤ n


:


ϕj,k(yj, y1) = xk,
ϕj,k(xj−1, x1) = xk,
ϕj,k(yj, x1) = yk+1,

ψj,1(1 ≤ j ≤ n − 1) :



ψj,1(xj, y1) = y1,
ψj,1(xj, x1) = 2x1,
ψj,1(yj, x1) = 2y1,
ψj,1(xi, xj+1) = −2xi+1, 1 ≤ i ≤ n − 1,
ψj,1(yi, xj+1) = −2yi+1, 1 ≤ i ≤ n,
ψj,1(xi, yj+1) = −yi+1, 1 ≤ i ≤ n,
ψj,1(yi, yj+1) = −2xi, 1 ≤ i ≤ n,

ψj,k


1 ≤ j ≤ n,
2 ≤ k ≤ n


:


ψj,k(xj, y1) = yk,
ψj,k(xj, x1) = 2xk,
ψj,k(yj, x1) = 2yk,

ψj,n+1 (1 ≤ j ≤ n) :


ψj,n+1(xj, y1) = yn+1,
ψj,n+1(yj, x1) = 2yn+1,

form a basis of ZL20(NF
n,n+1,NF n,n+1).

Proposition 4.10. The cochains ξj,k and ζj,k defined as

ξj,k = ϕj,k, 1 ≤ j ≤ n, j ≤ k ≤ n,

ξj,k = ϕj,k −
1
2
ψj,k+1, 2 ≤ j ≤ n, 1 ≤ k ≤ j − 1,

ζj,1 =
1
2
ψj−1,1 − ϕj,1, 2 ≤ j ≤ n,

ζn+1,1 = −ϕn+1,1,
ζj,k = ψj−1,k, 2 ≤ j ≤ n + 1, j ≤ k ≤ n + 1,

ζj,k =
1
2
ψj−1,k − ϕj,k, 2 ≤ j ≤ n + 1, 2 ≤ k ≤ j − 1,

form a basis of BL20(NF
n,n+1,NF n,n+1).

Corollary 4.11. {ϕn+1,2, ϕn+1,3, . . . , ϕn+1,n} form a basis of HL20(NF
n,n+1,NF n,n+1).

Therefore

dim ZL20(NF
n,n+1,NF n,n+1) = 2n2

+ 2n − 1,

dim BL20(NF
n,n+1,NF n,n+1) = 2n2

+ n,

dimHL20(NF
n,n+1,NF n,n+1) = n − 1.

The proposition below specifies basic infinitesimal deformations satisfying the condition (2.1).

Proposition 4.12. The infinitesimal deformations ϕj,k (1 ≤ j ≤ n + 1, 2 ≤ k ≤ n) andψj,k (1 ≤ j ≤ n, 2 ≤ k ≤ n + 1) satisfy
the condition (2.1), but the 2-cocycles ϕj,1 (1 ≤ j ≤ n + 1) and ψj,1 (1 ≤ j ≤ n − 1) do not satisfy the condition (2.1).

Since
n

k=2 bkψn,k and
n

k=2 ckϕn+1,k define linear integrable deformations of NF n,n and NF n,n+1, respectively, we
consider two families of superalgebras νt(b2, b3, . . . , bn) = NF n,n

+ t
n

k=2 bkψn,k and ηt(c2, c3, . . . , cn) = NF n,n+1
+

t
n

k=2 ckϕn+1,k with the multiplication tables

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] =
1
2
yi+1, 1 ≤ i ≤ n − 1,

[xn, y1] = t
n

k=2

bkyk,

[yi, x1] = yi+1, 1 ≤ i ≤ n − 1,

[yn, x1] = 2t
n

k=2

bkyk,

[xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

[xn, x1] = 2t
n

k=2

bkxk,

and



[xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

[xn, x1] = t
n

k=2

ckxk,

[yi, x1] = yi+1, 1 ≤ j ≤ n,

[yn+1, x1] = t
n

k=2

ckyk+1,

[yi, y1] = xi, 1 ≤ i ≤ n,

[yn+1, y1] = t
n

k=2

ckxk,

[xi, y1] =
1
2
yi+1, 1 ≤ i ≤ n

respectively.
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Putting b′

k = tbk and c ′

k = tck, we can assume in both multiplications t = 1.
From the description of single-generated Leibniz superalgebras it is deduced that they have multiplication tables of the

form of the superalgebras ν1(b2, b3, . . . , bn) and η1(c2, c3, . . . , cn).
Similarly to the case of Leibniz algebras for superalgebras we obtain the following theorem.

Theorem 4.13.


b2,...,bn
Orb(ν1(b2, b3, . . . , bn)) and


c2,...,cn

Orb(η1(c2, c3, . . . , cn)) are irreducible components of the
varieties Leibn,n and Leibn,n+1, respectively.
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