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a b s t r a c t

This paper is devoted to the description of complex finite-dimensional algebras of level
two. We obtain the classification of algebras of level two in the varieties of Jordan, Lie and
associative algebras.
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1. Introduction

Important subjects playing a relevant role inMathematics and Physics are degenerations, contractions and deformations
of algebras.

Degenerations of non-associative algebras were the subject of numerous papers (see for instance [1–4] and references
given therein), and their research continues actively [5–7].

The general linear group GL(V ) over a field K acts on the finite-dimensional vector space V ∗
⊗ V ∗

⊗ V , the space of
K-algebra structures, by the change of basis. For two K-algebra structures λ and µ we say that µ is a degeneration of λ if
µ lies in the orbit closure of λ with respect to Zariski topology (it is denoted by µ → λ). The orbit closure problem from a
geometrical point of view consists of the classification of all degenerations of a certain algebra structure of a fixed dimension.
This problem also depends on a complete classification of the corresponding algebra structures. Both problems are highly
complicated even in small dimensions.

It is known that closures of orbits in Zariski and standard topologies coincide in the case of an algebraically closed field of
characteristic zero and as a particular case usually considered the field C. Therefore, mainly the degenerations of complex
objects are investigated.

It is well-known that there are closed relations between associative, Lie and Jordan algebras. In fact, commutator product
defined on associative algebra gives us Lie algebra, while symmetrized product gives Jordan algebra. Moreover, any Lie
algebra is isomorphic to a subalgebra of a certain commutator algebra. The analogue of this result is not true for Jordan
algebras, that is, there are Jordan algebras which cannot be obtained from symmetrized product on associative algebras
(such type of algebras are called exceptional Jordan algebras).
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The description of degenerations of dimensions less than five for complex Lie algebras and for nilpotent ones of
dimensions less than seven was done in [8,9]. In the case of Jordan algebras we have the description of degenerations up to
dimension four [10].

Since any n-dimensional algebra degenerates to the abelian algebra (denoted by an), the lowest edges in degenerations
graph end on an. In [11] Gorbatsevich described the nearest-neighbor algebras to an (algebras of level one) in the
degeneration graphs of commutative and skew-symmetric algebras. In the work [12] it was ameliorated and correction of
some non-accuraciesmade in [11]. Namely, a complete list of algebras level one in the variety of finite-dimensional complex
algebras is obtained.

In fact, Gorbatsevich studied in [13] a very interesting notion closely related to degeneration: λ → µ (algebras λ and µ
not necessarily have the same dimension) if λ ⊕ ak degenerates to µ ⊕ am in the sense considered in this paper for some
suitable k,m ≥ 0. The corresponding first three levels of such type of degenerations are completely classified in [13].

In this paper we study the description of finite-dimensional algebras of level two over the field of complex numbers.
More precisely, we obtain the classification of algebras of level two in the varieties of Jordan, Lie and associative algebras.

In the multiplication table of an algebra omitted products are assumed to be zero. Moreover, due to commutatively and
anticommutatively of Jordan and Lie algebras, symmetric products for these algebras are also omitted.

2. Preliminaries

In this section we give some basic notions and concepts used through the paper.
Let λ be a n-dimensional algebra. We know that the algebra λ may be considered as an element of the affine variety

Hom(V ⊗ V , V ) via the mapping λ: V ⊗ V → V over a field K. The linear reductive group GLn(K) acts on the variety of
n-dimensional algebras Algn via change of basis, i.e.,

(g ∗ λ)(x, y) = g

λ

g−1(x), g−1(y)


, g ∈ GLn(K), λ ∈ Algn.

The orbits Orb(−) under this action are the isomorphism classes of algebras. Note that solvable (respectively, nilpotent)
algebras of the same dimension also form an invariant subvariety of the variety of algebras under the mentioned action.

Definition 2.1. An algebra λ is said to degenerate to an algebra µ, if Orb(µ) lies in the Zariski closure of Orb(λ). We denote
this by λ → µ.

The degeneration λ → µ is called trivial, if λ is isomorphic to µ. Non-trivial degeneration λ → µ is called direct
degeneration if there is no chain of non-trivial degenerations of the form: λ → ν → µ.

Definition 2.2. The level of a n-dimensional algebra λ is the maximum length of a chain of direct degenerations, which, of
course, ends with the algebra an (the algebra with zero multiplication).

Here we give the description of the algebras of level one.

Theorem 2.3 ([12]). A n-dimensional (n ≥ 3) algebra is algebra of level one if and only if it is isomorphic to one of the following
pairwise non-isomorphic algebras:

p−

n : e1ei = ei, eie1 = −ei, 2 ≤ i ≤ n;
n−

3 ⊕ an−3 : e1e2 = e3, e2e1 = −e3;
λ2 ⊕ an−2 : e1e1 = e2;

νn(α) : e1e1 = e1, e1ei = αei, eie1 = (1 − α)ei, 2 ≤ i ≤ n, α ∈ C.

Note that algebras λ2 ⊕ an−2 and νn
 1
2


are Jordan algebras.

It is remarkable that the notion of degeneration considered in [13] is weaker than notions which are used in this paper.
For instance, the levels byGorbatsevich’swork of the algebras p−

n and νn(α)donot equal one, because of p−
n ⊕a1 → n−

3 ⊕an−2
and νn(α) ⊕ a1 → λ2 ⊕ an−1.

It is known that any finite-dimensional associative (Jordan) algebraA is decomposed into a semidirect sumof semi-simple
subalgebra Ass and nilpotent radical Rad(A). Moreover, an arbitrary finite-dimensional semi-simple associative (Jordan)
algebra contains an identity element. Therefore, one can assume that a finite-dimensional associative (Jordan) algebra over
a field K of charK = 0 is either nilpotent or has an idempotent element.

One of the important results of theory of associative algebras related with idempotents is Pierce’s decomposition. Let A
be an associative algebra which contains an idempotent element e. Then we have decomposition

A = A1,1 ⊕ A1,0 ⊕ A0,1 ⊕ A0,0

with property Ai,j · Ak,l ⊆ δj,kAi,l, where δj,k are Kronecker symbols. The subspaces Aj,k are called Pierce’s components.
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Below we present an analogue of Pierce’s decomposition for Jordan algebras.

Theorem 2.4 ([14]). Let e be an idempotent of a Jordan algebra J. Then we have the following decomposition into a direct sum of
subspaces

J = P0 ⊕ P 1
2

⊕ P1,

where Pi = {x ∈ J | x · e = ix}, i = 0; 1
2 ; 1 and the multiplications for the components Pi are defined as follows:

P2
1 ⊆ P1, P1 · P0 = 0, P2

0 ⊆ P0, P0 · P 1
2

⊆ P 1
2
, P1 · P 1

2
⊆ P 1

2
, P2

1
2

⊆ P0 ⊕ P1.

3. Main result

This section is devoted to the classifications of algebras of level two in the varieties of complex n-dimensional Jordan, Lie
and associative algebras.

3.1. Jordan algebras of level two

In this subsection we give the classification of algebras of level two in the variety of complex n-dimensional Jordan
algebras.

Theorem 3.1. A n-dimensional (n ≥ 3) Jordan algebra is algebra of level two if and only if it is isomorphic to one of the following
pairwise non-isomorphic algebras:

J1 = {e} ⊕ an−1 : e · e = e;
J2 = {e1, e2, e3, . . . , en} : e1 · e1 = e1, e1 · ei = ei, 2 ≤ i ≤ n;
J3 = {e1, e2, e3} ⊕ an−3 : e1 · e2 = e3.

Proof. Firstly we suppose that semi-simple part of the Jordan algebra J is non-trivial, i.e., Jss ≠ 0. Thereby, there exists a
unit element e of Jss and J admits a basis {e, x1, x2, . . . , xp, y1, y2, . . . , yq, z1, z2, . . . , zr} such that

P1 = {e, x1, x2, . . . , xp}, P0 = {y1, y2, . . . , yq}, P 1
2

= {z1, z2, . . . , zr}.

The assertion of Theorem 2.4 provides the table of multiplication in this basis:

J :



e · xi = xi, xi · xj = αi,je +

p
k=1

βk
i,jxk, xi · zj =

r
k=1

δk
i,jzk,

yi · yj =

q
k=1

γ k
i,jyk, yi · zj =

r
k=1

νk
i,jzk,

e · zi =
1
2
zi, zi · zj = λi,je +

p
k=1

µk
i,jxk +

q
k=1

θ k
i,jyk.

It is easy to see that condition p = q = 0 implies the multiplication

e · e = e, e · zi =
1
2
zi, zi · zj = λi,je.

From Jordan identity we get λi,j = 0 and the algebra νn(
1
2 ) is obtained. However, this algebra is an algebra of level one.

Therefore, we assume that (p, q) ≠ (0, 0). Taking the degeneration

gt : gt(e) = e, gt(xi) = t−1xi, gt(yj) = t−1yj, gt(zk) = t−1zk,

we easily obtain that any Jordan algebra J with condition of non-triviality of semi-simple part is degenerated to the following
algebra

e · e = e, e · xi = xi, e · yj = 0, e · zk =
1
2
zk, 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ r.

• If p = r = 0, then we obtain the algebra J1.
• If q = r = 0, then we get the algebra J2.
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• If two of the p, q, r are non-zero, then denoting by e1 = e and elements {xi, yj, zk} by elements ei, 2 ≤ i ≤ n, we rewrite
the table of multiplication as follows:

J(ζi) : e1 · e1 = e1, e1 · ei = ζiei, 2 ≤ i ≤ n,

where ζi ∈ {0; 1
2 ; 1} and there exist i, j such that ζi ≠ ζj. Without loss of generality, one can suppose ζ2 ≠ ζ3. Taking the

degeneration gt defined as

g−1
t :


g−1
t (e1) = te1, g−1

t (e2) = e2 + e3,
g−1
t (e3) = t(ζ2e2 + ζ3e3), g−1

t (ei) = ei, 4 ≤ i ≤ n,

we obtain that the algebra J(ζi) degenerates to J3.

Now we consider the case of Jss = 0, i.e., the Jordan algebra J is nilpotent.
Case 1. Let dimJ2 ≥ 2. Then the algebra J admits a basis {x1, x2, . . . , xn} such that {x1, x2, . . . , xk} ∈ J \ J2 and

xk+1, xk+2 ∈ J2. Moreover, one can assume x1 ∈ J \ J2 and x1 · x1 = xk+1 ∈ J2 \ J3.
Case 1.1. Let dim(J2/J3) ≥ 2. Then xk+2 ∈ J2 \ J3 and we can suppose x1 · x2 = xk+2.
Indeed, if there exists some i such that x1 · xi ∉ span⟨xk+1⟩, then without loss of generality, we can suppose i = 2 and

derive x1 · x2 = xk+2.
Let now x1 · xi ∈ span⟨xk+1⟩ for any i. We set x1 · xi = αixk+1, 2 ≤ i ≤ k. The condition xk+2 ∈ J2 \ J3 implies the existence

of j, 2 ≤ j ≤ k such that xj · xj = xk+2. Without loss of generality, one can assume j = 2. Hence, we obtain the products

x1 · x1 = xk+1, x1 · x2 = α2xk+1, x2 · x2 = xk+2.

Taking the change of basis

x′

1 = x1 + Ax2, x′

2 = x2, x′

k+1 = (1 + 2Aα2)xk+1 + A2xk+2, x′

k+2 = α2xk+1 + Axk+2,

where A(1 + Aα2) ≠ 0, we derive

x′

1 · x′

1 = x′

k+1, x′

1 · x′

2 = x′

k+2.

Therefore, in this subcase we have shown that there exists a basis {x1, x2, . . . , xk+1, xk+2 . . . , xn} such that

x1 · x1 = xk+1, x1 · x2 = xk+2, x2 · x2 = γk+1xk+1 + γk+2xk+2 + · · · + γnxn.

Taking the degeneration

gt :


gt(x1) = t−2x1, gt(x2) = t−2x2,
gt(xk+2) = t−4xk+2, gt(xi) = t−3xi, i ≠ k + 2, 3 ≤ i ≤ n,

we obtain that the algebra J degenerates to the algebra with the following table of multiplication:

x1 · x2 = xk+2, x2 · x2 = γk+2xk+2.

Obviously, this algebra is isomorphic to the algebra J3 (by the basis transformation x′

2 := x2 − γk+2x1 and x′

i := xi for
i ≠ 2).

Case 1.2. Let dim(J2/J3) = 1. Then xk+2 ∈ J3. If there exist i, j such that x1 · xi ∉ span⟨xk+1⟩ or xi · xj ∉ span⟨xk+1⟩,
then similarly to Case 1.1 we conclude that the algebra J degenerates to the algebra J3. Now we consider the case of
x1 · xi, xi · xj ∈ span⟨xk+1⟩.

We set

x1 · xi = α1,ixk+1, xi · xj ∈ αi,jxk+1, 2 ≤ i, j ≤ k.

Due to xk+2 ∈ J3, we get the existence of some i0 (1 ≤ i0 ≤ k + 1) such that xi0 · xk+1 = xk+2. Without loss of generality,
we can assume i0 = 1. Indeed, if x1 · xk+1 = 0, then taking the change

x′

1 = x1 + Axi0 , x′

k+1 = (1 + 2Aα1,i0 + A2αi0,i0)xk+1, x′

k+2 = (1 + 2Aα1,i0 + A2αi0,i0)Axi0xk+1,

we obtain

x1 · x1 = xk+1, x1 · xk+1 = xk+2, xk+1 · xk+1 = γk+2xk+2 + · · · + γnxn.

Taking the degeneration

gt :


gt(x1) = t−2x1, gt(xi) = t−3xi, 2 ≤ i ≤ n, i ≠ k + 1; k + 2,
gt(xk+1) = t−2xk+1, gt(xk+2) = t−4xk+2,

we conclude that the algebra J degenerates to the algebra with the following table of multiplication:

x1 · xk+1 = xk+2, xk+1 · xk+1 = γk+2xk+2,

which is isomorphic to J3.
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Case 2. Let dimJ2 = 1. Then J3 = 0 and either J has a three-dimensional indecomposable subalgebraJ with conditions
dimJ2 = 1,J3 = 0 or J is isomorphic to the algebra λ2 ⊕Cn−2. Taking into account that J is not isomorphic to λ2 ⊕Cn−2 and
that any three-dimensional indecomposable Jordan algebra satisfying the above conditions is isomorphic to the algebra:
x1 · x2 = x3 (in notation of [10] this algebra is T4), we conclude that the Jordan algebra J admits a basis {x1, x2, . . . , xn} such
that the table of multiplication in this basis is as follows:

x1 · x2 = xn, x1 · xi = αixn, x2 · xi = βixn, xj · xi = γi,jxn, 2 ≤ i, j ≤ n.

Taking the following degeneration

gt : gt(x1) = x1, gt(x2) = x2, gt(xn) = xn, gt(xi) = t−1xi, 3 ≤ i ≤ n − 1,

we obtain that the algebra J degenerates to J3.
In order to complete the proof of the theorem we need to establish that the algebras J1, J2 and J3 do not degenerate to

each other. For this purpose we shall apply invariant argumentations.
Due to nilpotency of J3 we have J1, J2 ∉ Orb(J3). Computing of dimensions of the spaces of derivations we get

dim(Der(J1)) = n2
− 2n + 1, dim(Der(J2)) = n2

− 2n + 1, dim(Der(J3)) = n2
− 3n + 4.

Since dim(Der(J1)) = dim(Der(J2)) ≥ dim(Der(J3)) we obtain that J2, J3 ∉ Orb(J1) and J1, J3 ∉ Orb(J2). �

Remark 3.2. Note that in the variety of 2-dimensional Jordan algebras, the algebras of level two are J1 and J2.

3.2. Lie algebras of level two

In this subsection we will describe algebras of level two in the varieties of complex n-dimensional Lie and associative
algebras.

We denote by Lien(C) the variety of n-dimensional complex Lie algebras.
Thanks to work [8] we have the lists of algebras of level two in the varieties Lie3(C) and Lie4(C). Namely, we can state

the next proposition.

Proposition 3.3. Algebras of level two of the variety Lie3(C) up to isomorphism are the following:

r2 ⊕ a1 : [e1, e2] = e2,
r3(α) : [e1, e2] = e2, [e1, e3] = αe3, |α| < 1, or α = ±1.

Algebras of level two of the variety Lie4(C) up to isomorphism are the following:

n4 : [e1, e2] = e3, [e1, e3] = e4,
r2 ⊕ a2 : [e1, e2] = e2,

r3(1) ⊕ a1 : [e1, e2] = e2, [e1, e3] = e3,
g4,1(α) : [e1, e2] = αe2, [e1, e3] = e3, [e1, e4] = e4, α ≠ 1, α ∈ C∗,

g4,2 : [e1, e2] = e2 + e3, [e1, e3] = e3, [e1, e4] = e4.

We consider Lie algebras

n5,1 ⊕ an−5 : [e1, e3] = e5, [e2, e4] = e5,
n5,2 ⊕ an−5 : [e1, e2] = e4, [e1, e3] = e5,
r2 ⊕ an−2 : [e1, e2] = e2,

gn,1(α) : [e1, e2] = αe2, [e1, ei] = ei, 3 ≤ i ≤ n, α ≠ 1, α ∈ C∗

gn,2 : [e1, e2] = e2 + e3, [e1, ei] = ei, 3 ≤ i ≤ n.

Further we shall need the following lemma.

Lemma 3.4.

dim(Der(n5,1 ⊕ an−5)) = n2
− 5n + 15, dim(ab(n5,1 ⊕ an−5)) = n − 2,

dim(Der(n5,2 ⊕ an−5)) = n2
− 5n + 13, dim(ab(n5,2 ⊕ an−5)) = n − 1,

dim(Der(r2 ⊕ an−2)) = n2
− 3n + 4, dim(ab(r2 ⊕ an−2)) = n − 1,

dim(Der(gn,1(α))) = n2
− 3n + 4, dim(ab(gn,1(α))) = n − 1,

dim(Der(gn,2)) = n2
− 3n + 4, dim(ab(gn,2)) = n − 1,

where ab(G) is a maximal abelian ideal of G.

In the following theorem we present a complete list of algebras of level two in the variety Lien(C), n ≥ 5.
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Theorem 3.5. An arbitrary n (n ≥ 5)-dimensional Lie algebra of level two is isomorphic to one of the following pairwise non-
isomorphic algebras:

n5,1 ⊕ an−5, n5,2 ⊕ an−5, r2 ⊕ an−2 gn,1(α), gn,2.

Proof. I. Firstly, we consider where G is a nilpotent algebra. We distinguish the following cases.
Case 1. Let dimG2

= 1. Then G is isomorphic to either Heisenberg algebra Hn=2k+1 or H2k+1 ⊕ an−2k−1. Thus, there exists
a basis {x1, x2, . . . , xk, y1, y2, . . . , yk, z, p1, . . . , pn−2k−1} of G such that [xi, yi] = z, 1 ≤ i ≤ k.

Clearly, k ≥ 2 because otherwise G is an algebra of level one. Taking the degeneration

gt :

gt(x1) = x1, gt(x2) = x2, gt(xi) = t−1xi, 3 ≤ i ≤ k,
gt(y1) = y1, gt(y2) = y2, gt(yi) = t−1yi, 3 ≤ i ≤ k,
gt(z) = z,

we obtain that the algebra G degenerates to n5,1 ⊕ an−5.
Case 2. Let dimG2

≥ 2.We suppose that {x1, x2, . . . , xk} are generator basis elements ofG. Then,without loss of generality,
we can assume [x1, x2] = xk+1.

Below, we show that it may always be assumed

[x1, x2] = x4, [x1, x3] = x5.

• Let there exist i0 such that [x1, xi0 ] ∉ span⟨xk+1⟩. Then taking

x′

1 = x1, x′

2 = x2, x′

3 = xi0 , x′

4 = xk+1, x′

5 = [x1, xi0 ]

we obtain [x′

1, x
′

2] = x′

4, [x′

1, x
′

3] = x′

5.
• Let [x1, xi] ∈ span⟨xk+1⟩ for all 3 ≤ i ≤ k and there exists some i0 such that [x2, xi0 ] ∉ span⟨xk+1⟩. Due to symmetricity of

x1 and x2, similarly to the previous case we can choose a basis {x′

1, x
′

2, . . . , x
′
n}with condition [x′

1, x
′

2] = x′

4, [x′

1, x
′

3] = x′

5.
• Let [x1, xi], [x2, xi] ∈ span⟨xk+1⟩ for all 3 ≤ i ≤ k. We set [x1, xi] = αixk+1 and [x2, xi] = βixk+1. Let xi0 and xj0 be

generators of G such that [xi0 , xj0 ] ∉ span⟨xk+1⟩. Since dimG2
≥ 2 one can assume [xi0 , xj0 ] = xk+2.

Putting

x′

1 = x1 + Axi0 , x′

2 = x2, x′

3 = xj0 , x′

4 = (1 − Aβi0)xk+1, x′

5 = Axk+2 + αi0xk+1

with A(1 − Aβi0) ≠ 0, we deduce [x′

1, x
′

2] = x′

4, [x′

1, x
′

3] = x′

5.
• Let [xi, xj] ∈ span⟨xk+1⟩ for all 1 ≤ i, j ≤ k. Then for some i0 we have [xi0 , xk+1] ≠ 0. Without loss of generality, one can

assume [x1, xk+1] = xk+2.
– If k ≥ 3, then setting

x′

1 = x1, x′

2 = x2, x′

3 = x3 + xk+1, x′

4 = xk+1, x′

5 = xk+2 + α1,3xk+1,
we obtain [x′

1, x
′

2] = x′

4, [x′

1, x
′

3] = x′

5.
– If k = 2, then we have [x1, x2] = x3, [x1, x3] = x4. It is not difficult to obtain that [x1, x4] = x5 or [x2, x3] = x5

(because of n ≥ 5). Indeed, taking
x′

1 = x1, x′

2 = x2, x′

3 = x4, x′

4 = x3, x′

5 = x5
in the case of [x1, x4] = x5 and

x′

1 = −x3, x′

2 = x1, x′

3 = x4, x′

4 = x2, x′

5 = x5
in the case of [x2, x3] = x5, we derive the products [x1, x2] = x4, [x1, x3] = x5.

Thus, there exists a basis {x1, x2, x3, . . . , xn} of Gwith the products

[x1, x2] = x4, [x1, x3] = x5.

Note that G degenerates to the algebra with multiplication:

[x1, x2] = x4, [x1, x3] = x5, [x2, x3] = γ4x4 + γ4x5

via the following degeneration:

gt :


gt(x1) = t−2x1, gt(x2) = t−2x2, gt(x3) = t−2x3,
gt(x4) = t−4x4, gt(x5) = t−4x5, gt(xi) = t−3xi, 6 ≤ i ≤ n.

From the change of basis x′

2 = x2 − γ5x1, x′

3 = x3 + γ4x1, we obtain that this algebra is isomorphic to n5,2 ⊕ an−5.
II. Let G be a solvable Lie algebra with nilradical N . Since the nilradical N degenerates to the abelian algebra, we conclude

that any solvable Lie algebra degenerates to the solvable algebra with abelian nilradical. Therefore, one can assume that G
is a solvable Lie algebra with abelian nilradical.

Moreover, if codimN ≥ 2, then choosing a basis {x1, x2, x3, . . . , xn} such that {x1, x2, . . . , xk} is a basis of the
complementary space to N and taking the degeneration

gt(x1) = x1, gt(x2) = t−1x2, . . . , gt(xk) = t−1xk, gt(xk+1) = xk+1, . . . , gt(xn) = xn,

we obtain that G degenerates to a solvable Lie algebra with nilradical of codimension equal to 1.
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Therefore, we assume that the algebra G admits a basis {x1, x2, . . . , xn} with nilradical N = {x2, x3, . . . , xn} and the
restriction of the operator ad(x1) on N has the Jordan normal form ad(x1)|N = (Jk1 , Jk2 , . . . Jks).

It is easy to see that, if the operator ad(x1)|N is a scalar matrix, that is, ad(x1)|N has a unique eigenvalue and ki = 1 for all
i (1 ≤ i ≤ s), then G is an algebra of level one (namely, G ∼= p−

n ).
Let the operator ad(x1)|N have a unique eigenvalue, but there exists a Jordan block of order greater than one. One can

assume k1 ≥ 2. Taking the degeneration

gt :


gt(x1) = x1, gt(x2) = t2−k1x2,
gt(xi) = t i−1−k1xi, 3 ≤ i ≤ k1 + 1,
gt(xk1+···+kj−1+i) = t i−1−kjxk1+···+kj−1+i, 2 ≤ j ≤ s, 2 ≤ i ≤ kj + 1,

we obtain that G degenerates to the algebra gn,2.
Let the operator ad(x1)|N have different eigenvalues. Taking the following degeneration:

gt : gt(x1) = x1, gt(xk1+···+kj−1+i) = t i−1−kjxk1+···+kj−1+i, 1 ≤ j ≤ s, 2 ≤ i ≤ kj + 1,

we conclude that the algebra G degenerates to an algebra of the family:

gn,1(α3, . . . αn) : [x1, x2] = x2, [x1, xi] = αixi, 3 ≤ i ≤ n, (α3, . . . αn) ≠ (1, . . . , 1).

Note that gn,1(0, 0, . . . , 0) is isomorphic to the algebra r2 ⊕an−2 and the algebras gn,1(1, . . . , 1, αj, 1, . . . , 1)with αj ≠ 1
and gn,1(α, α, . . . α) with α ≠ 1 are isomorphic to gn,1(α), via change of the basis x′

1 =
1
α
x1, x′

i = xi, 2 ≤ i ≤ n.
For the remaining cases of parameters αi we can assume that α3 ≠ 1 and α4 ≠ α5.

Making the basis transformation

e1 = x1, e2 = x2 + x3, e3 = x2 + α3e3, e4 = x4 + x5, e5 = α4x4 + α5x5, ei = xi, 6 ≤ i ≤ n,

we get the multiplication

[e1, e2] = e3, [e1, e3] = −α3e2 + (1 + α3)e3,
[e1, e4] = e5, [e1, e5] = −α4α5e4 + (α4 + α5)e5, [e1, ei] = ei, 6 ≤ i ≤ n.

Similarly to the nilpotent case, G degenerates to the algebra n5,2 ⊕ an−5 via the degeneration

gt :


gt(x1) = t−1x1, gt(x2) = t−1x2, gt(x3) = t−2x3,
gt(x4) = t−1x4, gt(x4) = t−2x5, gt(xi) = xi, 6 ≤ i ≤ n.

III. Let us suppose that G has not-trivial semi-simple part. Due to Levi’s decomposition we have G = (S1 ⊕ · · · ⊕ Sk)+̇R,
where Si are simple Lie ideals and R is solvable radical. From the classical theory of Lie algebras [15] we know that any simple
Lie algebra S has root decomposition with respect to regular element x. Namely we have

S = S0 ⊕ Sα ⊕ S−α ⊕ Sβ ⊕ S−β ⊕ · · · ⊕ Sγ ⊕ S−γ , x ∈ S0.

Let {x1, x2, . . . , xn} be a basis such that x1 = x, x2 ∈ Sα and x3 ∈ S−α with α ≠ 0. Then [x1, x2] = αx2 and
[x1, x3] = −αx3. By scaling of basis elements we can assume that α = 1.

Taking the degeneration

gt(x1) = x1, gt(xi) = t−1xi, 2 ≤ i ≤ n,

we obtain that G is degenerated to the following algebra:

[x1, x2] = x2, [x1, x3] = −x3, [x1, xi] ∈ lin⟨x2, x3, . . . , xn⟩.

Obviously, this solvable algebra is not an algebra of level one (from Case II).
Hence, any Lie algebra G with non-trivial semi-simple part has not level two.
Thus, we have proved that any Lie algebra, which is not level one, degenerates to one of the algebras:

n5,1 ⊕ an−5, n5,2 ⊕ an−5, r2 ⊕ an−2, gn,1(α), gn,2.

Taking into account that the propertyλ → µ implies dimDer(λ) < dimDer(µ) and dimab(λ) < dimab(µ) and Lemma3.4
we conclude that these algebras do not degenerate to each other. �

Applying similar techniques as in the proof of Theorems 3.1 and 3.5 we obtain the list of n-dimensional associative
algebras of level two.
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Theorem 3.6. Any n-dimensional associative algebra of level two is isomorphic to one of the following algebras:

A1 : e · e = e;
A2 : e1 · e1 = e1, e1 · ei = ei, ei · e1 = ei, 2 ≤ i ≤ n;
A3 : e1 · e1 = e1, e1 · ei = ei, 2 ≤ i ≤ n;
A4 : e1 · e1 = e1, ei · e1 = ei, 2 ≤ i ≤ n;

A5(α) : e2 · e1 = e3, e1 · e2 = αe3, α ∈ {|z| < 1} ∪ {|z| = 1, Im(z) ≥ 0};
A6 : e1 · e1 = e3, e2 · e1 = e3, e1 · e2 = −e3.

Acknowledgments

The author would like to gratefully acknowledge the support to IMU/CDC-program. The author is very grateful to the
reviewer for his/her valuable comments and suggestions which helped to improve the presentation.

References

[1] D. Burde, C. Steinhoff, Classification of orbit closures 4-dimensional complex Lie algebras, J. Algebra 214 (2) (1999) 729–739.
[2] J.M. Casas, A.Kh. Khudoyberdiyev, M. Ladra, B.A. Omirov, On the degenerations of solvable Leibniz algebras, Linear Algebra Appl. 439 (2) (2013)

472–487.
[3] F. Grunewald, J. O’Halloran, Varieties of nilpotent Lie algebras of dimension less than six, J. Algebra 112 (2) (1998) 315–325.
[4] I. Kashuba, M.E. Martin, The variety of three-dimensional real Jordan algebras. arXiv:1404.5001v1 16 p.
[5] S. Albeverio, B.A. Omirov, I.S. Rakhimov, Varieties of nilpotent complex Leibniz algebras of dimension less than five, Comm. Algebra 33 (5) (2005)

1575–1585.
[6] J.M. Ancochea Bermúdez, J. Fresán, J. Margalef Bentabol, Contractions of low-dimensional nilpotent Jordan algebras, Comm. Algebra 39 (3) (2011)

1139–1151.
[7] J.F. Herrera-Granada, P.A. Tirao, Filiform Lie algebras of dimension 8 as degenerations, J. Algebra Appl. 13 (4) (2014) 10.
[8] D. Burde, Degenerations of 7-dimensional nilpotent Lie algebras, Comm. Algebra 33 (4) (2005) 1259–1277.
[9] C. Seeley, Degeneration of 6-dimensional nilpotent Lie algebras over C, Comm. Algebra 18 (10) (1990) 3493–3505.

[10] I. Kashuba, M.E. Martin, Deformations of Jordan algebras of dimension four, J. Algebra 399 (2014) 277–289.
[11] V.V. Gorbatsevich, On contractions and degeneracy of finite-dimensional algebras, Soviet Math. (Iz. VUZ) 35 (10) (1991) 17–24.
[12] A.Kh. Khudoyberdiyev, B.A. Omirov, The classification of algebras of level one, Linear Algebra Appl. 439 (11) (2013) 3460–3463.
[13] V.V. Gorbatsevich, Anticommutative finite-dimensional algebras of the first three levels of complexity, St. Petersburg Math. J. 5 (1994) 505–521.
[14] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. 39 (1968).
[15] N. Jacobson, Lie Algebras, Interscience Publishers, Wiley, New York, 1962.

http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref1
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref2
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref3
http://arxiv.org/1404.5001v1
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref5
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref6
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref7
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref8
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref9
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref10
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref11
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref12
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref13
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref14
http://refhub.elsevier.com/S0393-0440(15)00172-2/sbref15

	The classification of algebras of level two
	Introduction
	Preliminaries
	Main result
	Jordan algebras of level two
	Lie algebras of level two

	Acknowledgments
	References


