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Abstract—We consider the classification problem for special classes of nilpotent Leibniz algebras.
Namely, we consider “naturally” graded nilpotent n-dimensional Leibniz algebras for which the right
multiplication operator (by the generic element) has two Jordan blocks of dimensions m and n — m.
Earlier, the problem of classifying such algebras was studied for m < 4. The present paper continues
these studies for the case m > 4.
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1. INTRODUCTION

The present paper is devoted to the study of Leibniz algebras, which are “noncommutative” general-
izations of Lie algebras. The notion of Leibniz algebra was introduced at the beginning of the 1990s by
the French mathematician J. L. Loday [1] and was defined by the identity

[z, [y, 2]) = [[z, ], 2] — [[z, 2], y]-

Recall that the study of finite-dimensional Lie algebras was reduced to the study of nilpotent
algebras in [2], [3]. Methods and approaches related to nilpotent Lie algebras were studied in numerous
papers [4]—[6], etc. In this connection, it is natural to apply these results and methods to the study
of Leibniz algebras. Since the description of nilpotent Lie algebras is itself a boundless problem, the
study of nilpotent Leibniz algebras must be accompanied by imposing additional conditions such as
constraints on the index of nilpotency of the algebra, on the characteristic sequence, grading, etc. Note
that the classes of null-filiform and filiform Leibniz algebras were studied in [7], [8]. Naturally graded
quasifiliform Leibniz algebras were studied in [9], and the case of naturally graded p-filiform Leibniz
algebras was considered in [10].

In studying naturally graded quasifiliform Leibniz algebras [9], it was noted that, in contrast to the
Lie case, the Leibniz algebras contain a class of n-dimensional algebras whose characteristic sequence
is (n — 2,2). The subsequent study of naturally graded algebras with characteristic sequence equal to
(n — 3,3) shows that the class of non-Lie Leibniz algebras in this case is sufficiently wide. In the present
paper, we isolate non-Lie Leibniz algebras with characteristic sequence equal to (n —m, m), and provide
a description of such algebras. Moreover, we obtain expressions for the changes of the parameters in the
multiplication table of such algebras under an isomorphism; these expressions can be used to obtain a
complete classification in fixed dimension and a given value of m.
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NATURALLY GRADED LEIBNIZ ALGEBRAS 741

2. PRELIMINARIES
In this section, we present some necessary definitions and results.

Definition 2.1. An algebra L over a field F'is called a Leibniz algebra ii, for all elements z,y, z € L,
the following Leibniz identity holds:

[z, [y, 2]] = [[=,v], 2] = [z, 2], y],
where [+, -] is multiplication in L.

For an arbitrary Leibniz algebra L, let us define the lower central series
L'=1L, LFP=[LF LY, k>1.

Definition 2.2. A Leibniz algebra L is said to be nilpotent if there exists an s € N such that L® = 0.
The minimal number s possessing such a property is called the index of nilpotency or the nilindex of
the algebra L.

Note that the index of nilpotency of an n-dimensional nilpotent Leibniz algebra is at most n + 1.

Definition 2.3. Let L be a Leibniz algebra of dimension n. The algebra L we said to be null-filiform if
dimLi=(n+1)—i1<i<n+1

[t is readily seen from the definition that the fact that an algebra L is null-filiform is equivalent to the
fact that it has the maximal index of nilpotency.

The following theorem asserts that, in each dimension, up to isomorphism, there exists a unique
null-filiform Leibniz algebra.

Theorem 2.4 ([7]). In any n-dimensional null-filiform Leibniz algebra L, there exists a basis
{e1,ea,... ey} such that multiplication in the algebra L has the following form:

[6@,61]262'4_1, 1§i§n—1
(the omitted products vanish).
Theset R(L) ={x € L: [y,z] = 0foranyy € L} is called the right annihilator of the algebra L.
Let L be an n-dimensional nilpotent Leibniz algebra, and let x be an arbitrary element from the
set L'\ [L,L]. For the nilpotent right multiplication operator R,, we define the decreasing sequence

C(x) = (n1,n2,...,nk) consisting of the dimensions of the Jordan blocks of the operator R,. On the
set of such sequences, we define the lexicographic order.

Definition 2.5. The sequence C(L) = max,cp\z2 C(x) is called the characteristic sequence of the
algebra L.

Example 1 ([7]). Let L be an n-dimensional Leibniz algebra. L is Abelian if and only if we have
C(L)=(1,1,...,1).

Example 2 ([7]). Ann-dimensional Leibniz algebra L is null-filiform if and only if C(L) = (n).

Let us define the notion of a naturally graded algebra.
Let L be a finite-dimensional nilpotent Leibniz algebra. Set

gr(L); := L'/L*, 1<i<s—1,
where s is the nilindex of the algebra L, and denote
grL=gr(L); ©gr(L)s® - @ gr(L)s-1.

Since [gr(L);, gr(L);] € gr(L);+;, we obtain a graded algebra gr L. The grading constructed above will
be called the natural grading. 1f a Leibniz algebra G is isomorphic to the algebra gr L, then G is called
a naturally graded Leibniz algebra.

Definition 2.6. An algebra L is said to be decomposable if there exist subalgebras M and NN of the
algebra L such that L = M & N and [M,N] = [N, M] = 0.
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742 MASUTOVA et al.

3. DESCRIPTION OF NATURALLY GRADED LEIBNIZ ALGEBRAS
WITH CHARACTERISTIC SEQUENCE C(L) = (n — m,m), m > 4

Taking into account results from [9], [10], in what follows, we shall consider n-dimensional naturally
graded Leibniz algebras with characteristic sequence C'(L) = (n — m, m) form > 4.

The definition of the characteristic sequence of a Leibniz algebra implies the existence a basis
{e1,€9,...,€n—m, f1,-- ., fm} such that the matrix of the right multiplication operator R, has one of

the following two forms:
0 In—m 0O 7
0 Jn

1) Jm 0 ,
0 Jn—m

Definition 3.1. A Leibniz algebra L is called an algebra of type 1 if there exists an element e; € L\ L?
such that the right multiplication operator R, has a matrix of the form

Jom 0\
o J.)

if Re, has a matrix of the second form, then L is called an algebra of type 11.

where n—m > m.

Suppose that M and N are null-filiform Leibniz algebras with dim M =n —m and dim N = m,
respectively. Therefore, C(M) = (n —m) and C(N) = (m). It is readily verified that the decomposable
algebra L = M @& N has the characteristic sequence C(L) = (n —m,m). In the following theorem,
it is asserted that the decomposable Leibniz algebras whose characteristic sequence is equal to
C(L) = (n — m,m) consist only of the direct sum of two null-filiform Leibniz algebras.

Theorem 3.2. Let L be a Leibniz algebra with characteristic sequence C(L) = (n —m,m). The
algebra L is decomposable if and only if M and N are null-filiform Leibniz algebras with
dimM=n—-—m,dim N = m.

Proof. Necessity. let L be a decomposable Leibniz algebra whose characteristic sequence is
C(L) = (n —m,m), i.e., there exist subalgebras M and N of the algebra L such that L=M & N
and [M, N| = [N, M] = 0. Then there exists an element a € L suchthata =x +y,z € M,y € N, and
the matrix of the right multiplication operator R, has the following form:

Jn—m O
0 Jn
Therefore, there exist bases {e1, ez, ..., en—m} C M and {f1,..., fm} C N such that
ae; =e€j+1, 1<i<n—m-—1, afi = fix1, 1<i<m-—1
Hence we have

re; =eiy1, 1<i<n-—m-—1, yfi= fir1, 1<i<m-—1

Then the matrix of restriction of the right multiplication operator to M (respectively, to V) has the form
(Jn—m) (respectively, (J,,,)). Thus, it follows from Example 2 that M and N are null-filiform algebras.

Sufficiency. Let M and N be null-filiform Leibniz algebras with dim M = n — m and dim N = m.
Then there exist bases {e1, ea,...,en—m}and {f1,..., fin} in M and N, respectively, such that

€i€1 = €41, 1<i<n-—-m-—1,
fifv = fit1, 1<i<m-—1.
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NATURALLY GRADED LEIBNIZ ALGEBRAS 743
Take an elementa = e; + f1 € L = M & N. Consider
Ro(z) = [z,a] = [z,e1 + f1] = [z, e1] + [z, fi] = Re, (x) + Ry, ().
Obviously,
Ru(e;)) =e€iy1, 1<i<n—m-—1, and Ru(fi) = fix1, 1<i<m—1.

Then the matrix of the operator R, has the following form:

therefore, C(a) = (n — m, m).

Suppose that there exists an element y € L\ L?: C(y) > C(a) = (n —m,m). Then C(y) =
(k1,...,ks) satisfies k; > n — m. Therefore, there exists an element z € L:

[[[z,g],y],,yl;é 0.

~
k1 times

Since the nilindex of L is n —m, i.e., L™ = {0}, it follows that k; < n — m; a contradiction. But if
Cly) = (n—m,ke,... ks), where Zk =m,
p=2

then k2 > m; a contradiction. Therefore, C(L) = (n —m, m).

Theorem 3.2 provides a classification of naturally graded decomposable Leibniz algebras with
characteristic sequence equal to (n — m, m), m > 4. In what follows, we shall consider indecomposable
Leibniz algebras and, for convenience, we shall write ab instead of the product [a, b].

Let L be an n-dimensional indecomposable naturally graded Leibniz algebra over the field F.
Suppose that x = (z1, 29, ..., x,) € F™

Let us introduce the maps A, ;, B; j: F™ — F as follows:

7j—1

Aij(x) = (-1)'Ci oy, 2<i+j<n,
=0
m—1

Bij(x) =Y (-D)'Cl i, 2<i+j<n.
=0

Here and elsewhere, C"* denotes the binomial coefficient (;ﬁb)

In what follows, we shall need the following lemma.

Lemma 3.3. For arbitraryi,j € N, the following equalities are valid:

Aij(r) = Aip15(x) = A jya(z),
B j(x) — Bit1,j(z) = Bi j+1(2).

Proof. The proof is carried out by induction, making use of the equality C;-_l + C’]l-j = C’]l-.
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744 MASUTOVA et al.

Theorem 3.4. Let L be a Leibniz algebra with characteristic sequence C(L) = (n—m,m) of typel.
Then there exists a basis {ey,ea,...,en—m, f1,-.., fm} Of the algebra L in which the multiplication
table has the following form:

eie] = €jy1, 1<i:<n—m-—1,

fier = fiy1, 1<i<m-—1,

eifj = Aij(a)eir; + Aij(B)fivj, 1<i<m-—j, 3.1)
fifi = Aij(v)eirs + Aij(6) firj, 1<i<m—j, '
eifj = Aijla)eitj, m—j+1<i<n—m-—j

fifi = Bij(7v)eitj, m—j+1<i<min{m,n—m—j}

(the other products vanish).

Proof. The condition

I
0 Jn
where n — m > m, implies that there exists a basis {e1, ea, ..., €n—m, f1,- .., fm } such that
eie1 =¢eiyr1, 1<i<n—m-—1, en—me1 = 0,
fier = fix1, 1<i<m-—1, fme1 = 0.
[t is readily verified that
L; = {e;, fi) for 1<i<m,
L; = (&) for m+1<i<n-m,

<627 s 7en—m> € R(L)
Consider multiplication in L by the element f; on the right. Let
eift = aeit1 + Bifiy1, 1<i<m-—1,

e f1 = a;ejyq, m<i<n-—m-—1, en—mf1 =0,
fifv =i€iv1 +0ifiy1, 1<i<m-—1, Jmf1 = Ymem+1.
Applying induction on j and the Leibniz identity for the products
eifj, 1<i<n-—m, and fifin 1<i<m,

for any value of 4, we obtain multiplication on the right by the element f;,2 < j < m.
For 7 = 2, we consider all possible values of ¢ and obtain the following products:
o 1 <i<m—2,
eifa = ei(fie1) = (eifi)er — eiv1fi1 = qieiya + Bifira — (Qir1€ir2 + Biv1fiv2)
= (a; — aiy1)eir2 + (Bi — Biv1) firs

o i =m—1,
em—1f2 = em—l(flel) = (em—lfl)el - emfl = (am—lem + Bm—lfm)el — OmEm+1

= (am—l _am)em—l—l-
e m<i<n—m-—2,

eifo =ei(fie1) = (eifi)er — eir1f1 = qieipa — aip1€i42
= (o — aiy1)eiv2;
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NATURALLY GRADED LEIBNIZ ALGEBRAS 745

e i=n—m-—1lori=n—m,
eifa = 0;

e 1 <1< m—2,
fifa = fi(fier) = (fifi)er — fit1f1 = vi€ig2 + 0ifir2 — (Vit1€i42 + i1 fit2)
= (Vi — Yit1)€it2 + (0; — Oit1) firo-

e i =m—1,

fm-1f2 = fm—l(flel) = (fm—1f1)€1 — fmf1

= (/Ym—lem + 5m—1fm)€1 — YmEm+1 = (7m—1 - 'Ym)em—l—l'

fmf2 = fm(flel) = (fmfl)el - (fmel)fl = TmEm+2-

Thus, relations (3.1) hold for j = 2.
Suppose that relations (3.1) are valid for j = ¢, and let us prove them for j = ¢ + 1.
[t follows from the Leibniz identity that

eifqr1 = ei(feer) = (eifg)er — eip1fq, fifqr1 = fi(fqer) = (fifg)er — fiy1 [y

Using Lemma 3.3, for all 4, we obtain
e 1 <i<m—q—1,

eifor1 = Aigr1(@)eitgr1 + Aig1(B) fitqtr1;

e i=m-—gq,

6m—qfq-i—l = Am—q#l-i—l (a)em—i-l ;

em—qg+1<i<n—-m-—q-—1,

eifgr1 = Aigri(a)eipqrt;

e i =n—m-—gq,

en—m—qfq—l—l = An—m—q,q(a)en—mel = 0;

en—m—qg+1<i<n—m,

eifq+1 = 0.
Similarly, for products of the form f; f;, we obtain

e 1 <i<m-—q-—1,

fifor1 = Aigr1(V)€irgr1 + Aig+1(6) firg1;

MATHEMATICALNOTES Vol.93 No.5 2013



746 MASUTOVA et al.
«i=m-—gq,

fm—qfq+1 = Bm—q,q+1 (v)em+1:

e m—qg+1<i<min{n—m—qg—1,m},

Jifor1 = Bigr1(V)eitq+1-

Thus, from Theorem 3.4, we obtain the following collection of structure constants defining the
multiplication table of the algebra:

A1y ooy O 1, Oy Ot 1y -+ -5 Om—1, Oy, At 15 - - -5 An—m—1, 617 s 7ﬁk—17ﬁk7ﬁk+17 s 7ﬁm—17
V1o w s V=15 Vhks Vh+15-+ - s Ym—15 Vm, 517 s aék—lv 57437 5k’+17 s aém—l'
Let fr ¢ R(L),and let fr1q1 € R(L),1 <k < m — 1, where k is a fixed number. Then, for different &,
we obtain nonintersecting classes. Indeed, the dimensions of the right annihilators of algebras from

these classes will differ.
Let us present the following auxiliary lemmas.

Lemma 3.5 ([11]). For an arbitrary polynomial P of degree less than n, the following equality
holds:

n

Y (-1)CP(i) =0.

=0

Lemma 3.6 ([11]). For arbitrary a,n € N, the following identity holds:

n

n—k
Z (_1)kC§Ca+(n—k)—1 =0.
k=0

Theorem 3.7. Let L be a Leibniz algebra of type 1. Let fi, ¢ R(L), fr+1 € R(L), 1 <k<m—1.
Then the following relations hold:

Bi=-1, B;=0 2<i<k-1,
Bewe =Cpl B+ (DL, 1<t<m—k-1,

where 3 = By is a fixed number.

(3.2)

Proof. Let fi ¢ R(L), and let fx11 € R(L),1 <k <m — 1. Obviously,
fier +erfi € R(L), 1<i<k-1.
Since
fier +eifi = fix1 + Avi(a)eirt + A1i(B) fita
and (ez, ..., en—m) € R(L), we obtain 1 + A; ;(5) = 0.

Fori =1, we have 1 + A 1(8) =1+ 1 = 0 and, therefore, §; = —1.
Fori > 1, using the equality

1—1
1+ A1) =1+ 61+ Z (-D'CL B
=1

we obtain
i—1
d (-DICi B =0, i>2

=1
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This yields

—2
Bi=(-1") (-D)'C 1, i>2.
=1

Using the resulting relation, we shall show by induction on ¢ that 5; = 0 for all 2 <7 < k — 1. Indeed,
fori = 2, we have 8 = 0 and, for i = 3, the equality —28s + 33 = 0 implies that 53 = 0.
Suppose that 5; = 0fori = g < k — 1. Then, using

q q—1
D (D' Cebiir =Y (1) Cofir + (=1)1Bg1 = 0,
=1 =1

we obtain 3441 = 0.
Thus, we have obtained 3y = —1, 85 =0, ..., Bx_1 = 0.
Now consider the products e; fx41,1 <i<m —k— 1.
The condition fr+1 € R(L) implies that
e1frkr1 =0 and A gy (a@)eryo + A1 g1(8) frt2 = 0.

Therefore,

A pr1(a) =0,
A 41(8) =0

Since
k
A1 () =D (~D)ICLB1 = B+ 0+ + 0+ (=1 BBy + (—1)F B,
1=0

we have By1 = kB + (1),
Similarly, considering products of the form e; fr41, 2 <i <m — k — 1, we have A; ;41(58) = 0. Let
us prove the following dependence by induction:
Bepe=Cpl B+ (-DFCrTl,,  1<t<m—k-1.

The base of the induction was obtained earlier. It follows from the condition
k

Aigr1(3) =) (-D'C}B
1=0

that
Bri = (= "’“Z ) ChBi  2<i<m—k-1.

Suppose that the equality

Bret+i = k+z LB+ (- )kcilftil—2
isvalidforall1 <7 <¢—1(2 < ¢ <m—k—1);letusproveitfori = ¢q. Using the equality A; 54+1(8) =
0, we obtain
k -1

(—1)'ChBrg = (DF 0B+ Y () B ) + (= 1) By = 0.

=0 l=1—q

Using Lemma 3.6 in the following equalities:
~1

Brig = (1) {(—1)’“—410:"%(—1)’“ > DGO, a8+ (CD )

l=1—¢q
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-1
= (D)8 = Y CDNCTTO B+ (CDFCETCE )
l=1—q
-1

-1
= (DT Y (CY'GRCE A - (CDF Y (CD'GCE

l=1—q I=1—q
-1 -1
=6 (CV'GMOL L — (D Y (DGO
l=—q I=1—q
q q—1
=By (V'O — CDNY (DG
1=1 1=1
q q—1
= 8Ok =By (FDICLCEL L+ (C1F Ok = (CDF Y (DGR
=0 =0
= 5011;:;—1 + (_1)kcl]c€—;;—27
we find that
Brvg = BOKa 1+ (1D)FCra .
Therefore, for i = ¢ formula (3.2) is also valid.
Theorem 3.7 shows that the constants fii1,...,0n—1 are expressed in terms of g;. In the

subsequent theorems, we show that the constants «;, ;, §;, 7 > k 4 1, can also be linearly expressed in
terms of Ay Vi 52', 1< < k.

Let us present the following auxiliary lemma.

Lemma 3.8. Forarbitraryi,k,l € N, the following equality holds:
i—1
Chyi = > CVPCLT Ly iy = (CD' GGl (3.3)
p=0

Proof. The proofis carried out by induction, making use of Lemma 3.6.

Theorem 3.9. Let L be a Leibniz algebra of type 1. Let fr, ¢ R(L), fr+1 € R(L), 1 <k <m—1.
Then

gy = (DM (D) O s, 1<t<m—k— 1. (3.4)
l

Ed
—_

Il
=)

Proof. It follows from the assumptions of the theorem that e; fyy1; = 0for1 <t <m — k — 1. Then

k+t—1
Avpre(@) = Y2 (-1)'Chyrsain =0,
1=0
whence
k+t—2
gy = (1) Z (_1)lcllc+t—1al+lv lstsm-—k-1
1=0

Using the resulting relations, let us prove equalities (3.4) by induction.
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For ¢t = 1, we obviously have
k-1
+1
g1 = (=DM (=D Clara,
1=0

Fort < ¢ <m — k — 1, suppose that relations (3.4) hold; let us prove them for ¢ = ¢ + 1.

In view of the relations
k+t—2

gy = (=1 Z (_1)1C1lc+t—1al+1:
1=0

E
—_

k L fe—l—
apee = (D)"Y (1) ChLyy O i, t<gq,
;

Il
=)

and equality (3.3) from the chain of equalities

k+q—1
k 1A
Qpygpr = (=1 Z (1) Cryqut1

k—1 k4q—1

k+ +1
(T o+ 3 (1000 )
=0 =k

k—1 q—1
k+q+1 l+k I+k
< Ck+qal+1 + § Ck+qal+k+1>
o =0

k—

- ) Ok—i—qal—i-l

qg—1
k+q+1 1)k k+ k+1z 1) P k—p—1
1) Z( Ck+q< Ck—i—lck —pri—1%+1

k—1 q—1 k—1
k
B (_1)k+q+l[z(_1)lcllf+qal+l =D VPG (D' O G, 1al+1]
=0 p=0 =0
k—1 q—1
k
— (1Y 1 Oy - X (-1POKTCh Ol
=0 p=0
k—1
= (—1)k+1 (— )Ck+quI: l+q 10041
=0

we find that, fort = ¢ + 1, relations (3.4) hold; thus, Theorem 3.9 is proved.

Remark 3.10. Using Theorem 3.9, we have obtained the dependence of the structure constants
Qt1y -y Qp—1 in terms of aq, ..., ag. In the case n —m > m, the parameters au,, ..., ap—m—1 are
found from the equalities e;fx1¢ =0 for 1 <i<mn—2m, 1 <t <m—k. Thus, relations (3.4) are
extended tothecasem —k<t<n-m-—k—1,ie.,

k41 Ll k—1—1
Qg = (—1)FF (=1) Chpt1 Oy ouis1, 1<t<mn-m-—k-—1.
l

N
—

Il
o

Taking identities fi fr1+ =0, 1 <t < m — k, into account, we can prove the following theorem just
as we proved Theorem 3.9.
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Theorem 3.11. Let L be a Leibniz algebra of type 1. Let fi, ¢ R(L), and let fri1 € R(L), 1 <k <
m — 1. Then

k—l—
ol (_1)lcllc+t—10k—l+tl—2%+17 I1<t<m-—k,

E
—_

Vet = (—1)

N
Il
o

E
—_

St = ()Y (=D)ICLy O g0, 1<t<m—k—1.

N
Il
o

Remark 3.12. Using Theorem 3.11, we obtain the dependence d; in terms of the constants 41,
d2,...,0. Taking into account the condition f;f1 + f1fi € R(L), 1 <i <m, it is easy to see that all
the odd 9; are linearly expressed in terms of the even ones, i.e., the number of free parameters decreases
twofold.

Let L be a naturally graded Leibniz algebra with characteristic sequence C(L) = (n —m,m) of
type II.

Theorem 3.13. Let L be a Leibniz algebra with characteristic sequence C(L) = (n —m,m) of type
Il. Then, in L, there exists a basis {e1,ea,...,em, f1,..., fn—m} Such that multiplication in the
algebra is of the following form:

€1 = €it1, 1<i<m-—1,
fier = fiv1, 1<i<n—-m-1,
eifj = Aij(@)eir; + Aij(B) firs, 1<i<m-—j, (3.5)
fifi = Aij(V)eivs + Aij(6) fitj, 1<i<m-—j, '
eifi = Bi;i(B)fitj, m—j+1<i<min{m,n—m—j},
fifi = Aij(0) fitj, m—-j+1<i<n—m-—j

(the other products vanish).

Proof. The proof is similar to that of Theorem 3.4.

Thus, we have obtained the following collection of structure constants defining the algebra:
QLyeey Q15 Oy Qg 15 -+ Q1,5 By Be—1, B> Bty -+ Bm—1, Bms
Viseos Vhm1s Vh» Vh41s -+ s Ym—1s Oty 0k—1,0k, Okt 1y - -+ 01, Oy Ot 1y - - - On—im—1.-

Theorem 3.14. Let L be a Leibniz algebra of type 1l. Let fr ¢ R(L), and let fri1 € R(L), where
1<k<m-—1. Hence

01 =-—1, G;i=0, 2<i<k-1,
Burt = CLL B+ (~DACly, 1<t<m—k
where B = B is a fixed number.

Proof. The proofis similar to that of Theorem 3.7.

Using the same arguments as for type I, we obtain the following theorem.

Theorem 3.15. Let L be a Leibniz algebra of type 11. Let fi, ¢ R(L), and let fiy1 € R(L), where
1<k<m-—1. Then

k—1
gt = (DY (DOl Gy sy, 1<t<m—k -1,
=0
k—1
k—1—
Vit = (—1)FF! (_1)lcll€+t—10k—l+tl_27l+17 1<t<m-k-1,
=0
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k—1
5M¢:(—n“4§:(—n%iﬁ_g$j;1th 1<t<m-—k
=0

Proof. The proof is similar to that of Theorem 3.9.

Remark 3.16. Ifm < k <n — m — 1, all the fixed constants «;, v;, 1 <i<m —1,and 5;,1 <i <m,
remain as parameters. Therefore, it suffices to find the dependence only foré;, k+1 <i<n—m —1,
in terms of ¢;, 1 <4 < k. In Theorem 3.14, the constants dxy¢, 1 <t < m — k, are linearly expressed
in terms of d1,...,0; for 1 <k <m — 1. We can extend the relation for 6;; from Theorem 3.14 in the
interval 1 < k < n —m — 1. Thus, we obtain

k-1
St = ()Y (—1)'ClLyy 1Ol 0, 1<t<n—m—k- L
1=0
Moreover, just as in Remark 3.12, we find that the odd constants ¢; are expressed in terms of even.

4. ON TRANSFORMATIONS OF NATURALLY GRADED LEIBNIZ ALGEBRAS
WITH CHARACTERISTIC SEQUENCE C(L) = (n — m,m), m > 4

Let L be an n-dimensional naturally graded Leibniz algebra whose characteristic sequence is
C(L) = (n—m,m),m >4, oftype I, and let {e1, €2, ..., €n—m, f1,--., fm} be abasisin L. Then, from
Theorem 3.4, we find that multiplication in L is defined by the equalities (3.1). Thus, the classification
problem can be reduced to the problem of finding the structure constants «;, 8;, v;, and §; for 1 <i < k.

Statement 4.1. Let L be a Leibniz algebra of type 1, let fi, ¢ R(L), and let fry1 € R(L), where
1<k<m-—1. Then e; = Aje; + B;fi, f-, =Cie; + D;fi,2<i <k, where

AQZA%—l-AlBlOél-FB%’Yl, BQZBfél,
Cy = A1Cy + B1Ciay + B1Dy, Dy = A1Dy — B1Cy + B1 D14y,

A=A 1(A1 + Bioi—1) + Bi—1B1vi-1,
i—2

Bi = Bi_1(A1 + B16;—1) = B H (A1 + B16141), (4.1)
=1

Ci =Ci—1(A1 + Bra—1) + Di—1B17i-1,
i—2

D; =D;_1(A1 + B1d;—1) = Dy H (A1 + B16141)-
=1

Prooi. Consider the general transformation of the basic elements. It is well known that, for naturally
graded Leibniz algebras, it suffices to consider the transformation

e} = Aje1 + B1fi, f1=Cier + D1 fi.

The proof of the statement is concluded by using the products eje} = €}, and f{f| = f/ ;.

In the general transformation of the basis elements, the new constants o/, 3!, ~/, 0} appear; they must
be expressed via the initial constants «;, G;, ¥4, 9;.

Theorem 4.2. Let L be a Leibniz algebra of type 1, let f ¢ R(L), and let fr+1 € R(L), where
1<k <m-—1. Then, in the general transformation of the basis, the parameters «;, (;, i, 6;,
1<i<k, takethe form

, (AiC1 4 Di(;Ai +7iBi))Diy1 — BiCiy1(C1 + 6;Dy)

o) = . 1<i<k-1,
’ Aiv1Dit1 — Bit1Cipa
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ﬁ; _ Ai+1Bi(Cl + (5ZD1) — (AZCl + Dl(aiAi + ’YiBi))Bi—i-l ’ 1 < ; < E— 1’
Ait1Di1 — Bi1Cipr

N = (CiC1 + D1(0tC; +v:D;))Diy1 — DiCipq(Ch1 + 6;D1) ’ | <i<k-1
Ait1Dip1 — Biy1Cipr

5 = Ait1D;i(Cy + 0;D1) — (C;Cy + D1 (;Ci + v D;) ) Bit1 ’ l<i<k-1,

Aiy1Div1 — Bi1Cia

(AxC1 + D1(ax A + ViBi))(Dit1 + Bk B1Cr) — (BrC1 + D1(Br Ak + 01.Bk))Cria
Apy1Dry1 — Bry1Crpr + B B1(Ap 410k — ArCiya) ’

g = A1 1(C1Cy + D1 (B Ay + 61.Br)) — (Bry1 + BeArB1)(AxC1 + Di(ax Ag + 1 Br))
Apy1Dry1 — Bry1Crpr + B B1(Ap 410k — ArChya) ’

o = (C1Cx + D1(akCx + WDx))(Dr41 + B B1Cr) — (C1Dy + D1(BrCr + 0k Di))Crt1
Apy1Dpy1 — Bry1Cpp1 + B B1(Ar 10k — ArChry1) ’

Ak 1(C1Dy + D1(BrCr + 61.Dy)) — (Bt + BrArB1)(CrCr + D1(axCr + .Dy))

& = ,
F Apt1Diy1 — Bi41Crq1 + B B1(Ak+1Cr — ApChri)

where A;, By, C;, D; satisfy relations (4.1).

o) =

Proof. It follows from the assumptions of the theorem that
e; = Aje; + B f;, 1<i<k,
fi = Cie; + D f, 1<i<k,
where the A4;, B;, C;, D; are defined by identities (4.1).
Forl <i¢ <k —1, we have
e;f1 = (Aie; + Bifi)(Ciex + D1 f1)
= (A;C1 + 0 AiDy + v BiD1)ejp1 + (B;Cy + B A; Dy + 6;B; D1) fit1.
On the other hand,
e f1 = oieiy + Bifiy1 = di(Aipr€iv1 + Big fir1) + Bi(Civr€iv1 + Diy1 fiv).
Thus, we obtain the system of equalities
Aipi0; + Cipa B = AiC1 + 2 A; Dy + v B; Dy,
Bit1d) + D18 = B;C1 + 3;A;D1 + 6;B; D1;
this yields
o = (AiC1+ Dilaidi +9iB;)) Dit1 — (BiC1 + D1(BiAi + 6iB;))Cit1
! Ait1Dip1 — Biy1Cipr ’
3= (BiC1 + D1(BiAi + 6;B;)) Aiy1 — (AiC1 + D1(ciAi +7iBi)) Biva
‘ Aiy1Di+1— B;i11Ci4q '

Similarly, from the equalities

fif1 = (Ciei + D;f;)(Cier + D1 f1)
= (CiC1 + a;C;D1 + v DiDy)ejrq + (D;Cy + 3;C; Dy + 6;D;Dy) fit1,

fifl = vi€ion + 0 fiza = vi(Airreiv1 + By fiv1) + 0;(Citaeiv1 + Diga fir),
we obtain
Aiy17; + Ciy16; = CiC1 4 a;CiDy + ;D D1,
Biy17; 4 Diy16; = DiCy + B;CiD1 + 6;D; Dy,
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o = (CiC1 + D1(iC; + i D;)) D1 — (DiC1 + D1(B:C; + 6;D;))Cita ’
' Aiv1Dit1 — Bi1Cina
5 — (DiC1 + D1(BiCi + 6:D;)) Aiv1 — (CiCr + D1(Cs + v Ds)) Bia ‘
! Aiy1Div1 — Bip1Cig
For i = k, the following relations are also valid:
e}, = Axex, + B fr,
[ = Crex + Dy fr.
Using the Leibniz identity for e}, ;, f ;, we find the constants «;;, 8, 7, 0y
ehi1 = €€l = Aprer1 + (Brr1 + B AxB1) it
fiv1 = Freh = Crpaerta + (Digr + B B1Cy) fropa-
Consider
epfi = (AxC1 + ax Ag Dy + W BpD1)exy1 + (ByCi + BrAp Dy + 04 B.D1) fry1-
On the other hand,
eef1 = it + Bifier = af(Aprrersr + (Birr + BrAxBr) fi1)
+ B (Cry1ekt1 + (Drs1 + Be B1Cr) fiy1)-

Therefore,
A1, + Cr1 By, = ApCr + o A Dy + 41 By, Dy,
(Bi+1 + BeArBr)ay, + (Diy1 + BuB1Cr) By, = BrC1 + B ArD1 + 0, By D1,
whence
o = (AxC1 + Di(ar Ak + v Bi))(Dry1 + B B1Cx) — (BrCi + D1(BrAk + 01.Bi))Cry1

A1(Dgy1 + B B1Ck) — Cry1(Bit1 + BrArB1) ’
_ Ak+1(Bk01 + Dy (ﬂkAk + 5kBk)) — (Bk+1 + BkAkBl)(AkCl + Dy (akAk + 'YkBk))

/
B = Ap1(Dypgr + B B1Ck) — Crg1 (Brg1 + BrArB1) .

Similarly, from the product f; f{, we find the following identities:
= (C1Ck + D1(aCk + v.Dy)) (Dit1 + B B1Ck) — (C1 Dy, + D1(BkC + 0. Dy.)) Crga
k Ap11(Dis1 + Bk B1Ck) — Crq1(Bry1 + BrArBi) ’
5 — Ap1(C1 Dy + D1(BrCr + 6 Dy)) — (Brt1 + BrArB1)(CrC1 + D1(a,Cr, + v Dy))
k Ap1(Diy1 + B B1Ck) — Cry1(Bry1 + BrArB1)

Using the same arguments for Leibniz algebras of type Il as for type [, we obtain the following results.

Statement 4.3. Lef L be a Leibniz algebra of type 11. Let fi, ¢ R(L), and let fyi1 € R(L), where
m <k <n—m— 1. Then, in the general transformation of the basis, we find the dependence

e; = Aje; + Bifi, 1<i<m,
fi = Cie; + D;fi, 1<i<m,
fT/n—i-l = (ﬁmBlcm + Dm+1)fm+1,
i1
fi= [ﬁmB1C’m H (A1 + B16;) + Dy | fis m+2<i<n-—m,
l=m-+1

where A;, By, C;, D; are defined by equalities (4.1).
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Theorem 4.4. Let L be a Leibniz algebra of type 11. Let f, ¢ R(L), and let fry1 € R(L), where
m <k <n-—m—1. Then, for k = m, we have

of = (AiC1 + Dif0idi +9iBi) Divs = BiCin(Cr+6iDy)
Ai1Diy1 — Biy1Cigq
g = A1 Bi(CL+0:D1) = (AiCr+ Dilasdi + %Bi)Bivs 1y
Ait1Dit1 — Biy1Ci
; _ (CiC1+ D1(0iCi +7iDi)) Digr — DiCita (C1 4 6;D1)
h Ait1Dip1 — Bi1Cigq ’
5 = A1 Di(C1+6iD1) — (CiC1 + D1(eiCi +7iDi)) Bisy
‘ Ai1Diy1 — Biy1Cigq ’
ﬁ/ B ﬂAle + Bm(Cl —+ (5le) 5 = BCle + Dm(Cl + (5le)
" BB1Cy, + Dy ’ " BB1Cy, + Dy

1<i<m-—1,

1<i<m-—1,

Form+1<k<n-—m—1, wehave
O/- _ (AZCl + Dl(aiAi + ’YiBi))Di—i-l — BiCi-i-l(Cl + (5ZD1) ’ 1 < ; <m— 1’
’ Ait1Dit1 — Bit1Cina
ﬁ{ _ Ai+1Bi(Cl + (5ZD1) — (AZCl + D1 (azAz + ’YiBi))Bi-i-l
! Ait1Diy1 — Bit1Cin ’
, (CZ-Cl + Dy (aiC’i + ’YiDi))Di—i-l — DiCi—i—l (Cl + 52'D1)

1<i<m-—1,

= . 1<i<m-—1,
7 Ait1Dip1 — Bip1Cign
5; _ Ai+1Di(C1 + (5ZD1) — (CZC1 + Dl(aiC’i + ’YiDi))Bi-i-l ’ 1 < ; <m— 1’
Ait1Dip1 — Bip1Cigr
/o Bm(cl +5mD1) ’ Dm(Cl +5mD1)
5777, - Y 5m - Y
Dm+1 Dm+1
5£:Di(01+D16i), m+1<i<n—-m-—1.
Dy

5. CONCLUSIONS

[t should be noted that the solution of the classification problem consists of the following stages: the
description of the algebras satisfying the given conditions, i.e., the determination of the multiplication
table of the algebras with the least number of parameters; the determination of the relations determining
the change of the parameters in the new basis (in the general transformation of the basis); the study of
the given relations for the parameters and the determination of pairwise of nonisomorphic algebras with
given conditions. The results presented in this paper carry out the first two stages of the classification
of naturally graded Leibniz algebras with characteristic sequence equal to (n — m,m). The available
classifications for m = 2 and m = 3 ([9], [12]) show that, in the general case (i.e., for any values of m),
the classification is boundless. However, for fixed values of n and m, it can be obtained with the help of
the results of the present paper.
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