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Abstract—We consider the classification problem for special classes of nilpotent Leibniz algebras.
Namely, we consider “naturally” graded nilpotent n-dimensional Leibniz algebras for which the right
multiplication operator (by the generic element) has two Jordan blocks of dimensions m and n− m.
Earlier, the problem of classifying such algebras was studied for m < 4. The present paper continues
these studies for the case m ≥ 4.
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1. INTRODUCTION

The present paper is devoted to the study of Leibniz algebras, which are “noncommutative” general-
izations of Lie algebras. The notion of Leibniz algebra was introduced at the beginning of the 1990s by
the French mathematician J. L. Loday [1] and was defined by the identity

[x, [y, z]] = [[x, y], z] − [[x, z], y].

Recall that the study of finite-dimensional Lie algebras was reduced to the study of nilpotent
algebras in [2], [3]. Methods and approaches related to nilpotent Lie algebras were studied in numerous
papers [4]–[6], etc. In this connection, it is natural to apply these results and methods to the study
of Leibniz algebras. Since the description of nilpotent Lie algebras is itself a boundless problem, the
study of nilpotent Leibniz algebras must be accompanied by imposing additional conditions such as
constraints on the index of nilpotency of the algebra, on the characteristic sequence, grading, etc. Note
that the classes of null-filiform and filiform Leibniz algebras were studied in [7], [8]. Naturally graded
quasifiliform Leibniz algebras were studied in [9], and the case of naturally graded p-filiform Leibniz
algebras was considered in [10].

In studying naturally graded quasifiliform Leibniz algebras [9], it was noted that, in contrast to the
Lie case, the Leibniz algebras contain a class of n-dimensional algebras whose characteristic sequence
is (n − 2, 2). The subsequent study of naturally graded algebras with characteristic sequence equal to
(n− 3, 3) shows that the class of non-Lie Leibniz algebras in this case is sufficiently wide. In the present
paper, we isolate non-Lie Leibniz algebras with characteristic sequence equal to (n−m,m), and provide
a description of such algebras. Moreover, we obtain expressions for the changes of the parameters in the
multiplication table of such algebras under an isomorphism; these expressions can be used to obtain a
complete classification in fixed dimension and a given value of m.
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2. PRELIMINARIES
In this section, we present some necessary definitions and results.

Definition 2.1. An algebra L over a field F is called a Leibniz algebra if, for all elements x, y, z ∈ L,
the following Leibniz identity holds:

[x, [y, z]] = [[x, y], z] − [[x, z], y],

where [ · , · ] is multiplication in L.

For an arbitrary Leibniz algebra L, let us define the lower central series

L1 = L, Lk+1 = [Lk, L1], k ≥ 1.

Definition 2.2. A Leibniz algebra L is said to be nilpotent if there exists an s ∈ N such that Ls = 0.
The minimal number s possessing such a property is called the index of nilpotency or the nilindex of
the algebra L.

Note that the index of nilpotency of an n-dimensional nilpotent Leibniz algebra is at most n + 1.

Definition 2.3. Let L be a Leibniz algebra of dimension n. The algebra L we said to be null-filiform if
dim Li = (n + 1) − i, 1 ≤ i ≤ n + 1.

It is readily seen from the definition that the fact that an algebra L is null-filiform is equivalent to the
fact that it has the maximal index of nilpotency.

The following theorem asserts that, in each dimension, up to isomorphism, there exists a unique
null-filiform Leibniz algebra.

Theorem 2.4 ([7]). In any n-dimensional null-filiform Leibniz algebra L, there exists a basis
{e1, e2, . . . , en} such that multiplication in the algebra L has the following form:

[ei, e1] = ei+1, 1 ≤ i ≤ n − 1

(the omitted products vanish).

The set R(L) = {x ∈ L : [y, x] = 0 for any y ∈ L} is called the right annihilator of the algebra L.
Let L be an n-dimensional nilpotent Leibniz algebra, and let x be an arbitrary element from the

set L \ [L,L]. For the nilpotent right multiplication operator Rx, we define the decreasing sequence
C(x) = (n1, n2, . . . , nk) consisting of the dimensions of the Jordan blocks of the operator Rx. On the
set of such sequences, we define the lexicographic order.

Definition 2.5. The sequence C(L) = maxx∈L\L2 C(x) is called the characteristic sequence of the
algebra L.

Example 1 ([7]). Let L be an n-dimensional Leibniz algebra. L is Abelian if and only if we have
C(L) = (1, 1, . . . , 1).

Example 2 ([7]). An n-dimensional Leibniz algebra L is null-filiform if and only if C(L) = (n).

Let us define the notion of a naturally graded algebra.
Let L be a finite-dimensional nilpotent Leibniz algebra. Set

gr(L)i := Li/Li+1, 1 ≤ i ≤ s − 1,

where s is the nilindex of the algebra L, and denote

gr L = gr(L)1 ⊕ gr(L)2 ⊕ · · · ⊕ gr(L)s−1.

Since [gr(L)i, gr(L)j ] ⊆ gr(L)i+j , we obtain a graded algebra gr L. The grading constructed above will
be called the natural grading. If a Leibniz algebra G is isomorphic to the algebra gr L, then G is called
a naturally graded Leibniz algebra.

Definition 2.6. An algebra L is said to be decomposable if there exist subalgebras M and N of the
algebra L such that L = M ⊕ N and [M,N ] = [N,M ] = 0.
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742 MASUTOVA et al.

3. DESCRIPTION OF NATURALLY GRADED LEIBNIZ ALGEBRAS
WITH CHARACTERISTIC SEQUENCE C(L) = (n − m,m), m ≥ 4

Taking into account results from [9], [10], in what follows, we shall consider n-dimensional naturally
graded Leibniz algebras with characteristic sequence C(L) = (n − m,m) for m ≥ 4.

The definition of the characteristic sequence of a Leibniz algebra implies the existence a basis
{e1, e2, . . . , en−m, f1, . . . , fm} such that the matrix of the right multiplication operator Re1 has one of
the following two forms:

I)

⎛
⎝Jn−m 0

0 Jm

⎞
⎠ ,

II)

⎛
⎝Jm 0

0 Jn−m

⎞
⎠ ,

where n − m ≥ m.

Definition 3.1. A Leibniz algebra L is called an algebra of type I if there exists an element e1 ∈ L \L2

such that the right multiplication operator Re1 has a matrix of the form
⎛
⎝Jn−m 0

0 Jm

⎞
⎠ ;

if Re1 has a matrix of the second form, then L is called an algebra of type II.

Suppose that M and N are null-filiform Leibniz algebras with dim M = n − m and dim N = m,
respectively. Therefore, C(M) = (n − m) and C(N) = (m). It is readily verified that the decomposable
algebra L = M ⊕ N has the characteristic sequence C(L) = (n − m,m). In the following theorem,
it is asserted that the decomposable Leibniz algebras whose characteristic sequence is equal to
C(L) = (n − m,m) consist only of the direct sum of two null-filiform Leibniz algebras.

Theorem 3.2. Let L be a Leibniz algebra with characteristic sequence C(L) = (n − m,m). The
algebra L is decomposable if and only if M and N are null-filiform Leibniz algebras with
dim M = n − m, dim N = m.

Proof. Necessity. Let L be a decomposable Leibniz algebra whose characteristic sequence is
C(L) = (n − m,m), i.e., there exist subalgebras M and N of the algebra L such that L = M ⊕ N
and [M,N ] = [N,M ] = 0. Then there exists an element a ∈ L such that a = x + y, x ∈ M , y ∈ N , and
the matrix of the right multiplication operator Ra has the following form:

⎛
⎝Jn−m 0

0 Jm

⎞
⎠ .

Therefore, there exist bases {e1, e2, . . . , en−m} ⊆ M and {f1, . . . , fm} ⊆ N such that

aei = ei+1, 1 ≤ i ≤ n − m − 1, afi = fi+1, 1 ≤ i ≤ m − 1.

Hence we have

xei = ei+1, 1 ≤ i ≤ n − m − 1, yfi = fi+1, 1 ≤ i ≤ m − 1.

Then the matrix of restriction of the right multiplication operator to M (respectively, to N ) has the form
(Jn−m) (respectively, (Jm)). Thus, it follows from Example 2 that M and N are null-filiform algebras.

Sufficiency. Let M and N be null-filiform Leibniz algebras with dimM = n − m and dimN = m.
Then there exist bases {e1, e2, . . . , en−m} and {f1, . . . , fm} in M and N , respectively, such that

eie1 = ei+1, 1 ≤ i ≤ n − m − 1,
fif1 = fi+1, 1 ≤ i ≤ m − 1.
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Take an element a = e1 + f1 ∈ L = M ⊕ N . Consider

Ra(x) = [x, a] = [x, e1 + f1] = [x, e1] + [x, f1] = Re1(x) + Rf1(x).

Obviously,

Ra(ei) = ei+1, 1 ≤ i ≤ n − m − 1, and Ra(fi) = fi+1, 1 ≤ i ≤ m − 1.

Then the matrix of the operator Ra has the following form:
⎛
⎝Jn−m 0

0 Jm

⎞
⎠ ;

therefore, C(a) = (n − m,m).

Suppose that there exists an element y ∈ L \ L2 : C(y) > C(a) = (n − m,m). Then C(y) =
(k1, . . . , ks) satisfies k1 > n − m. Therefore, there exists an element z ∈ L:

[. . . [[z, y], y], . . . , y]︸ ︷︷ ︸
k1 times

�= 0.

Since the nilindex of L is n − m, i.e., Ln−m = {0}, it follows that k1 ≤ n − m; a contradiction. But if

C(y) = (n − m,k2, . . . , ks), where
s∑

p=2

kp = m,

then k2 > m; a contradiction. Therefore, C(L) = (n − m,m).

Theorem 3.2 provides a classification of naturally graded decomposable Leibniz algebras with
characteristic sequence equal to (n − m,m), m ≥ 4. In what follows, we shall consider indecomposable
Leibniz algebras and, for convenience, we shall write ab instead of the product [a, b].

Let L be an n-dimensional indecomposable naturally graded Leibniz algebra over the field F .
Suppose that x = (x1, x2, . . . , xn) ∈ Fn.

Let us introduce the maps Ai,j, Bi,j : Fn → F as follows:

Ai,j(x) =
j−1∑
l=0

(−1)lC l
j−1xl+i, 2 ≤ i + j ≤ n,

Bi,j(x) =
m−i∑
l=0

(−1)lC l
j−1xl+i, 2 ≤ i + j ≤ n.

Here and elsewhere, Cm
n denotes the binomial coefficient

(n
m

)
.

In what follows, we shall need the following lemma.

Lemma 3.3. For arbitrary i, j ∈ N, the following equalities are valid:

Ai,j(x) − Ai+1,j(x) = Ai,j+1(x),
Bi,j(x) − Bi+1,j(x) = Bi,j+1(x).

Proof. The proof is carried out by induction, making use of the equality C l
j−1 + C l−1

j−1 = C l
j .
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Theorem 3.4. Let L be a Leibniz algebra with characteristic sequence C(L) = (n−m,m) of type I.
Then there exists a basis {e1, e2, . . . , en−m, f1, . . . , fm} of the algebra L in which the multiplication
table has the following form:

eie1 = ei+1, 1 ≤ i ≤ n − m − 1,
fie1 = fi+1, 1 ≤ i ≤ m − 1,
eifj = Ai,j(α)ei+j + Ai,j(β)fi+j , 1 ≤ i ≤ m − j,

fifj = Ai,j(γ)ei+j + Ai,j(δ)fi+j , 1 ≤ i ≤ m − j,

eifj = Ai,j(α)ei+j , m − j + 1 ≤ i ≤ n − m − j,

fifj = Bi,j(γ)ei+j , m − j + 1 ≤ i ≤ min{m,n − m − j}

(3.1)

(the other products vanish).

Proof. The condition

Re1 =

⎛
⎝Jn−m 0

0 Jm

⎞
⎠ ,

where n − m ≥ m, implies that there exists a basis {e1, e2, . . . , en−m, f1, . . . , fm} such that

eie1 = ei+1, 1 ≤ i ≤ n − m − 1, en−me1 = 0,
fie1 = fi+1, 1 ≤ i ≤ m − 1, fme1 = 0.

It is readily verified that

Li = 〈ei, fi〉 for 1 ≤ i ≤ m,

Li = 〈ei〉 for m + 1 ≤ i ≤ n − m,

〈e2, . . . , en−m〉 ∈ R(L).

Consider multiplication in L by the element f1 on the right. Let

eif1 = αiei+1 + βifi+1, 1 ≤ i ≤ m − 1,
eif1 = αiei+1, m ≤ i ≤ n − m − 1, en−mf1 = 0,
fif1 = γiei+1 + δifi+1, 1 ≤ i ≤ m − 1, fmf1 = γmem+1.

Applying induction on j and the Leibniz identity for the products

eifj, 1 ≤ i ≤ n − m, and fifj, 1 ≤ i ≤ m,

for any value of i, we obtain multiplication on the right by the element fj , 2 ≤ j ≤ m.
For j = 2, we consider all possible values of i and obtain the following products:

• 1 ≤ i ≤ m − 2,
eif2 = ei(f1e1) = (eif1)e1 − ei+1f1 = αiei+2 + βifi+2 − (αi+1ei+2 + βi+1fi+2)

= (αi − αi+1)ei+2 + (βi − βi+1)fi+2;

• i = m − 1,
em−1f2 = em−1(f1e1) = (em−1f1)e1 − emf1 = (αm−1em + βm−1fm)e1 − αmem+1

= (αm−1 − αm)em+1.

• m ≤ i ≤ n − m − 2,
eif2 = ei(f1e1) = (eif1)e1 − ei+1f1 = αiei+2 − αi+1ei+2

= (αi − αi+1)ei+2;
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• i = n − m − 1 or i = n − m,

eif2 = 0;

• 1 ≤ i ≤ m − 2,

fif2 = fi(f1e1) = (fif1)e1 − fi+1f1 = γiei+2 + δifi+2 − (γi+1ei+2 + δi+1fi+2)
= (γi − γi+1)ei+2 + (δi − δi+1)fi+2.

• i = m − 1,

fm−1f2 = fm−1(f1e1) = (fm−1f1)e1 − fmf1

= (γm−1em + δm−1fm)e1 − γmem+1 = (γm−1 − γm)em+1.

• i = m,

fmf2 = fm(f1e1) = (fmf1)e1 − (fme1)f1 = γmem+2.

Thus, relations (3.1) hold for j = 2.
Suppose that relations (3.1) are valid for j = q, and let us prove them for j = q + 1.
It follows from the Leibniz identity that

eifq+1 = ei(fqe1) = (eifq)e1 − ei+1fq, fifq+1 = fi(fqe1) = (fifq)e1 − fi+1fq.

Using Lemma 3.3, for all i, we obtain

• 1 ≤ i ≤ m − q − 1,

eifq+1 = Ai,q+1(α)ei+q+1 + Ai,q+1(β)fi+q+1;

• i = m − q,

em−qfq+1 = Am−q,q+1(α)em+1;

• m − q + 1 ≤ i ≤ n − m − q − 1,

eifq+1 = Ai,q+1(α)ei+q+1;

• i = n − m − q,

en−m−qfq+1 = An−m−q,q(α)en−me1 = 0;

• n − m − q + 1 ≤ i ≤ n − m,

eifq+1 = 0.

Similarly, for products of the form fifj , we obtain

• 1 ≤ i ≤ m − q − 1,

fifq+1 = Ai,q+1(γ)ei+q+1 + Ai,q+1(δ)fi+q+1;
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• i = m − q,

fm−qfq+1 = Bm−q,q+1(γ)em+1;

• m − q + 1 ≤ i ≤ min{n − m − q − 1,m},

fifq+1 = Bi,q+1(γ)ei+q+1.

Thus, from Theorem 3.4, we obtain the following collection of structure constants defining the
multiplication table of the algebra:

α1, . . . , αk−1, αk, αk+1, . . . , αm−1, αm, αm+1, . . . , αn−m−1, β1, . . . , βk−1, βk, βk+1, . . . , βm−1,

γ1, . . . , γk−1, γk, γk+1, . . . , γm−1, γm, δ1, . . . , δk−1, δk, δk+1, . . . , δm−1.

Let fk /∈ R(L), and let fk+1 ∈ R(L), 1 ≤ k ≤ m − 1, where k is a fixed number. Then, for different k,
we obtain nonintersecting classes. Indeed, the dimensions of the right annihilators of algebras from
these classes will differ.

Let us present the following auxiliary lemmas.

Lemma 3.5 ([11]). For an arbitrary polynomial P of degree less than n, the following equality
holds:

n∑
i=0

(−1)iCi
nP (i) = 0.

Lemma 3.6 ([11]). For arbitrary a, n ∈ N, the following identity holds:
n∑

k=0

(−1)kCk
aCn−k

a+(n−k)−1 = 0.

Theorem 3.7. Let L be a Leibniz algebra of type I. Let fk /∈ R(L), fk+1 ∈ R(L), 1 ≤ k ≤ m − 1.
Then the following relations hold:

β1 = −1, βi = 0, 2 ≤ i ≤ k − 1,

βk+t = Ck−1
k+t−1β + (−1)kCk−1

k+t−2, 1 ≤ t ≤ m − k − 1,
(3.2)

where β = βk is a fixed number.

Proof. Let fk /∈ R(L), and let fk+1 ∈ R(L), 1 ≤ k ≤ m − 1. Obviously,

fie1 + e1fi ∈ R(L), 1 ≤ i ≤ k − 1.

Since

fie1 + e1fi = fi+1 + A1,i(α)ei+1 + A1,i(β)fi+1

and 〈e2, . . . , en−m〉 ∈ R(L), we obtain 1 + A1,i(β) = 0.
For i = 1, we have 1 + A1,1(β) = 1 + β1 = 0 and, therefore, β1 = −1.
For i > 1, using the equality

1 + A1,i(β) = 1 + β1 +
i−1∑
l=1

(−1)lC l
i−1βl+1

we obtain
i−1∑
l=1

(−1)lC l
i−1βl+1 = 0, i > 2.
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This yields

βi = (−1)i
i−2∑
l=1

(−1)lC l
i−1βl+1, i > 2.

Using the resulting relation, we shall show by induction on i that βi = 0 for all 2 ≤ i ≤ k − 1. Indeed,
for i = 2, we have β2 = 0 and, for i = 3, the equality −2β2 + β3 = 0 implies that β3 = 0.

Suppose that βi = 0 for i = q < k − 1. Then, using
q∑

l=1

(−1)lC l
qβl+1 =

q−1∑
l=1

(−1)lC l
qβl+1 + (−1)qβq+1 = 0,

we obtain βq+1 = 0.
Thus, we have obtained β1 = −1, β2 = 0, . . . , βk−1 = 0.
Now consider the products eifk+1, 1 ≤ i ≤ m − k − 1.
The condition fk+1 ∈ R(L) implies that

e1fk+1 = 0 and A1,k+1(α)ek+2 + A1,k+1(β)fk+2 = 0.

Therefore, {
A1,k+1(α) = 0,
A1,k+1(β) = 0.

Since

A1,k+1(β) =
k∑

l=0

(−1)lC l
kβl+1 = β1 + 0 + · · · + 0 + (−1)k−1kβk + (−1)kβk+1,

we have βk+1 = kβ + (−1)k .
Similarly, considering products of the form eifk+1, 2 ≤ i ≤ m − k − 1, we have Ai,k+1(β) = 0. Let

us prove the following dependence by induction:

βk+t = Ck−1
k+t−1β + (−1)kCk−1

k+t−2, 1 ≤ t ≤ m − k − 1.

The base of the induction was obtained earlier. It follows from the condition

Ai,k+1(β) =
k∑

l=0

(−1)lC l
kβl+i

that

βk+i = (−1)k+1
k−1∑
l=0

(−1)lC l
kβl+i, 2 ≤ i ≤ m − k − 1.

Suppose that the equality

βk+i = Ck−1
k+i−1β + (−1)kCk−1

k+i−2

is valid for all 1 ≤ i ≤ q − 1 (2 ≤ q ≤ m− k− 1); let us prove it for i = q. Using the equality Ai,k+1(β) =
0, we obtain

k∑
l=0

(−1)lC l
kβl+q = (−1)k−qCk−q

k β +
−1∑

l=1−q

(−1)l+kC l+k
k βk+(l+q) + (−1)kβk+q = 0.

Using Lemma 3.6 in the following equalities:

βk+q = (−1)k+1

[
(−1)k−qCk−q

k β + (−1)k
−1∑

l=1−q

(−1)lC l+k
k (Ck−1

k+l+q−1β + (−1)kCk−1
k+l+q−2)

]
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= (−1)1−qCk−q
k β −

−1∑
l=1−q

(−1)l(Ck+l
k Ck−1

k+l+q−1β + (−1)kCk+l
k Ck−1

k+l+q−2)

= (−1)1−qCk−q
k β −

−1∑
l=1−q

(−1)lCk+l
k Ck−1

k+l+q−1β − (−1)k
−1∑

l=1−q

(−1)lCk+l
k Ck−1

k+l+q−2

= −β

−1∑
l=−q

(−1)lCk+l
k Ck−1

k+l+q−1 − (−1)k
−1∑

l=1−q

(−1)lCk+l
k Ck−1

k+l+q−2

= −β

q∑
l=1

(−1)lCk−l
k Ck−1

k−l+q−1 − (−1)k
q−1∑
l=1

(−1)lCk−l
k Ck−1

k−l+q−2

= β Ck−1
k+q−1 − β

q∑
l=0

(−1)lC l
kC

k−1
k−l+q−1 + (−1)kCk−1

k+q−2 − (−1)k
q−1∑
l=0

(−1)lC l
kC

k−1
k−l+q−2

= βCk−1
k+q−1 + (−1)kCk−1

k+q−2,

we find that

βk+q = βCk−1
k+q−1 + (−1)kCk−1

k+q−2.

Therefore, for i = q formula (3.2) is also valid.

Theorem 3.7 shows that the constants βk+1, . . . , βm−1 are expressed in terms of βk . In the
subsequent theorems, we show that the constants αi, γi, δi, i ≥ k + 1, can also be linearly expressed in
terms of αi, γi, δi, 1 ≤ i ≤ k.

Let us present the following auxiliary lemma.

Lemma 3.8. For arbitrary i, k, l ∈ N, the following equality holds:

C l
k+i −

i−1∑
p=0

(−1)pCk+p
k+i C l

k+pC
k−l−1
k−l+p−1 = (−1)iC l

k+iC
k−l−1
k−l+i−1. (3.3)

Proof. The proof is carried out by induction, making use of Lemma 3.6.

Theorem 3.9. Let L be a Leibniz algebra of type I. Let fk /∈ R(L), fk+1 ∈ R(L), 1 ≤ k ≤ m − 1.
Then

αk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2αl+1, 1 ≤ t ≤ m − k − 1. (3.4)

Proof. It follows from the assumptions of the theorem that e1fk+t = 0 for 1 ≤ t ≤ m − k − 1. Then

A1,k+t(α) =
k+t−1∑

l=0

(−1)lC l
k+t−1αl+1 = 0,

whence

αk+t = (−1)k+t
k+t−2∑

l=0

(−1)lC l
k+t−1αl+1, 1 ≤ t ≤ m − k − 1.

Using the resulting relations, let us prove equalities (3.4) by induction.
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For t = 1, we obviously have

αk+1 = (−1)k+1
k−1∑
l=0

(−1)lC l
kαl+1.

For t ≤ q < m − k − 1, suppose that relations (3.4) hold; let us prove them for t = q + 1.
In view of the relations

αk+t = (−1)k+t
k+t−2∑

l=0

(−1)lC l
k+t−1αl+1,

αk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2αl+1, t ≤ q,

and equality (3.3) from the chain of equalities

αk+q+1 = (−1)k+q+1
k+q−1∑

l=0

(−1)lC l
k+qαl+1

= (−1)k+q+1

( k−1∑
l=0

(−1)lC l
k+qαl+1 +

k+q−1∑
l=k

(−1)lC l
k+qαl+1

)

= (−1)k+q+1

( k−1∑
l=0

(−1)lC l
k+qαl+1 +

q−1∑
l=0

(−1)l+kC l+k
k+qαl+k+1

)

= (−1)k+q+1
k−1∑
l=0

(−1)lC l
k+qαl+1

+ (−1)k+q+1
q−1∑
l=0

(−1)l+kCk+l
k+q

(
(−1)k+1

k−1∑
p=0

(−1)pCp
k+lC

k−p−1
k−p+l−1αp+1

)

= (−1)k+q+1

[ k−1∑
l=0

(−1)lC l
k+qαl+1 −

q−1∑
p=0

(−1)pCk+p
k+q

k−1∑
l=0

(−1)lC l
k+pC

k−l−1
k−l+p−1αl+1

]

= (−1)k+q+1
k−1∑
l=0

(−1)l
[
C l

k+q −
q−1∑
p=0

(−1)pCk+p
k+q C l

k+pC
k−l−1
k−l+p−1

]
αl+1

= (−1)k+1
k−1∑
l=0

(−1)lC l
k+qC

k−l−1
k−l+q−1αl+1

we find that, for t = q + 1, relations (3.4) hold; thus, Theorem 3.9 is proved.

Remark 3.10. Using Theorem 3.9, we have obtained the dependence of the structure constants
αk+1, . . . , αm−1 in terms of α1, . . . , αk. In the case n − m > m, the parameters αm, . . . , αn−m−1 are
found from the equalities eifk+t = 0 for 1 ≤ i ≤ n − 2m, 1 ≤ t ≤ m − k. Thus, relations (3.4) are
extended to the case m − k ≤ t ≤ n − m − k − 1, i.e.,

αk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2αl+1, 1 ≤ t ≤ n − m − k − 1.

Taking identities f1fk+t = 0, 1 ≤ t ≤ m − k, into account, we can prove the following theorem just
as we proved Theorem 3.9.
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Theorem 3.11. Let L be a Leibniz algebra of type I. Let fk /∈ R(L), and let fk+1 ∈ R(L), 1 ≤ k ≤
m − 1. Then

γk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2γl+1, 1 ≤ t ≤ m − k,

δk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2δl+1, 1 ≤ t ≤ m − k − 1.

Remark 3.12. Using Theorem 3.11, we obtain the dependence δk+t in terms of the constants δ1,
δ2, . . . , δk. Taking into account the condition fif1 + f1fi ∈ R(L), 1 ≤ i ≤ m, it is easy to see that all
the odd δi are linearly expressed in terms of the even ones, i.e., the number of free parameters decreases
twofold.

Let L be a naturally graded Leibniz algebra with characteristic sequence C(L) = (n − m,m) of
type II.

Theorem 3.13. Let L be a Leibniz algebra with characteristic sequence C(L) = (n−m,m) of type
II. Then, in L, there exists a basis {e1, e2, . . . , em, f1, . . . , fn−m} such that multiplication in the
algebra is of the following form:

eie1 = ei+1, 1 ≤ i ≤ m − 1,
fie1 = fi+1, 1 ≤ i ≤ n − m − 1,
eifj = Ai,j(α)ei+j + Ai,j(β)fi+j , 1 ≤ i ≤ m − j,

fifj = Ai,j(γ)ei+j + Ai,j(δ)fi+j , 1 ≤ i ≤ m − j,

eifj = Bi,j(β)fi+j , m − j + 1 ≤ i ≤ min{m,n − m − j},
fifj = Ai,j(δ)fi+j , m − j + 1 ≤ i ≤ n − m − j

(3.5)

(the other products vanish).

Proof. The proof is similar to that of Theorem 3.4.

Thus, we have obtained the following collection of structure constants defining the algebra:

α1, . . . , αk−1, αk, αk+1, . . . , αm−1, β1, . . . , βk−1, βk, βk+1, . . . , βm−1, βm,

γ1, . . . , γk−1, γk, γk+1, . . . , γm−1, δ1, . . . , δk−1, δk, δk+1, . . . , δm−1, δm, δm+1, . . . , δn−m−1.

Theorem 3.14. Let L be a Leibniz algebra of type II. Let fk /∈ R(L), and let fk+1 ∈ R(L), where
1 ≤ k ≤ m − 1. Hence

β1 = −1, βi = 0, 2 ≤ i ≤ k − 1,

βk+t = Ck−1
k+t−1β + (−1)kCk−1

k+t−2, 1 ≤ t ≤ m − k,

where β = βk is a fixed number.

Proof. The proof is similar to that of Theorem 3.7.

Using the same arguments as for type I, we obtain the following theorem.

Theorem 3.15. Let L be a Leibniz algebra of type II. Let fk /∈ R(L), and let fk+1 ∈ R(L), where
1 ≤ k ≤ m − 1. Then

αk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2αl+1, 1 ≤ t ≤ m − k − 1,

γk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2γl+1, 1 ≤ t ≤ m − k − 1,
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δk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2δl+1, 1 ≤ t ≤ m − k.

Proof. The proof is similar to that of Theorem 3.9.

Remark 3.16. If m ≤ k ≤ n − m − 1, all the fixed constants αi, γi, 1 ≤ i ≤ m − 1, and βi, 1 ≤ i ≤ m,
remain as parameters. Therefore, it suffices to find the dependence only for δi, k + 1 ≤ i ≤ n − m − 1,
in terms of δi, 1 ≤ i ≤ k. In Theorem 3.14, the constants δk+t, 1 ≤ t ≤ m − k, are linearly expressed
in terms of δ1, . . . , δk for 1 ≤ k ≤ m − 1. We can extend the relation for δk+t from Theorem 3.14 in the
interval 1 ≤ k ≤ n − m − 1. Thus, we obtain

δk+t = (−1)k+1
k−1∑
l=0

(−1)lC l
k+t−1C

k−l−1
k−l+t−2δl+1, 1 ≤ t ≤ n − m − k − 1.

Moreover, just as in Remark 3.12, we find that the odd constants δi are expressed in terms of even.

4. ON TRANSFORMATIONS OF NATURALLY GRADED LEIBNIZ ALGEBRAS
WITH CHARACTERISTIC SEQUENCE C(L) = (n − m,m), m ≥ 4

.
Let L be an n-dimensional naturally graded Leibniz algebra whose characteristic sequence is

C(L) = (n − m,m), m ≥ 4, of type I, and let {e1, e2, . . . , en−m, f1, . . . , fm} be a basis in L. Then, from
Theorem 3.4, we find that multiplication in L is defined by the equalities (3.1). Thus, the classification
problem can be reduced to the problem of finding the structure constants αi, βi, γi, and δi for 1 ≤ i ≤ k.

Statement 4.1. Let L be a Leibniz algebra of type I, let fk /∈ R(L), and let fk+1 ∈ R(L), where
1 ≤ k ≤ m − 1. Then e′i = Aiei + Bifi, f ′

i = Ciei + Difi, 2 ≤ i ≤ k, where

A2 = A2
1 + A1B1α1 + B2

1γ1, B2 = B2
1δ1,

C2 = A1C1 + B1C1α1 + B1D1γ1, D2 = A1D1 − B1C1 + B1D1δ1,

Ai = Ai−1(A1 + B1αi−1) + Bi−1B1γi−1,

Bi = Bi−1(A1 + B1δi−1) = B1

i−2∏
l=1

(A1 + B1δl+1),

Ci = Ci−1(A1 + B1αi−1) + Di−1B1γi−1,

Di = Di−1(A1 + B1δi−1) = D1

i−2∏
l=1

(A1 + B1δl+1).

(4.1)

Proof. Consider the general transformation of the basic elements. It is well known that, for naturally
graded Leibniz algebras, it suffices to consider the transformation

e′1 = A1e1 + B1f1, f ′
1 = C1e1 + D1f1.

The proof of the statement is concluded by using the products e′ie
′
1 = e′i+1 and f ′

if
′
1 = f ′

i+1.

In the general transformation of the basis elements, the new constants α′
i, β

′
i, γ

′
i, δ

′
i appear; they must

be expressed via the initial constants αi, βi, γi, δi.

Theorem 4.2. Let L be a Leibniz algebra of type I, let fk /∈ R(L), and let fk+1 ∈ R(L), where
1 ≤ k ≤ m − 1. Then, in the general transformation of the basis, the parameters αi, βi, γi, δi,
1 ≤ i ≤ k, take the form

α′
i =

(AiC1 + D1(αiAi + γiBi))Di+1 − BiCi+1(C1 + δiD1)
Ai+1Di+1 − Bi+1Ci+1

, 1 ≤ i ≤ k − 1,
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β′
i =

Ai+1Bi(C1 + δiD1) − (AiC1 + D1(αiAi + γiBi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
, 1 ≤ i ≤ k − 1,

γ′
i =

(CiC1 + D1(αiCi + γiDi))Di+1 − DiCi+1(C1 + δiD1)
Ai+1Di+1 − Bi+1Ci+1

, 1 ≤ i ≤ k − 1,

δ′i =
Ai+1Di(C1 + δiD1) − (CiC1 + D1(αiCi + γiDi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
, 1 ≤ i ≤ k − 1,

α′
k =

(AkC1 + D1(αkAk + γkBk))(Dk+1 + βkB1Ck) − (BkC1 + D1(βkAk + δkBk))Ck+1

Ak+1Dk+1 − Bk+1Ck+1 + βkB1(Ak+1Ck − AkCk+1)
,

β′
k =

Ak+1(C1Ck + D1(βkAk + δkBk)) − (Bk+1 + βkAkB1)(AkC1 + D1(αkAk + γkBk))
Ak+1Dk+1 − Bk+1Ck+1 + βkB1(Ak+1Ck − AkCk+1)

,

γ′
k =

(C1Ck + D1(αkCk + γkDk))(Dk+1 + βkB1Ck) − (C1Dk + D1(βkCk + δkDk))Ck+1

Ak+1Dk+1 − Bk+1Ck+1 + βkB1(Ak+1Ck − AkCk+1)
,

δ′k =
Ak+1(C1Dk + D1(βkCk + δkDk)) − (Bk+1 + βkAkB1)(CkC1 + D1(αkCk + γkDk))

Ak+1Dk+1 − Bk+1Ck+1 + βkB1(Ak+1Ck − AkCk+1)
,

where Ai, Bi, Ci, Di satisfy relations (4.1).

Proof. It follows from the assumptions of the theorem that

ei = Aiei + Bifi, 1 ≤ i ≤ k,

fi = Ciei + Difi, 1 ≤ i ≤ k,

where the Ai, Bi, Ci, Di are defined by identities (4.1).

For 1 ≤ i ≤ k − 1, we have

e′if
′
1 = (Aiei + Bifi)(C1e1 + D1f1)

= (AiC1 + αiAiD1 + γiBiD1)ei+1 + (BiC1 + βiAiD1 + δiBiD1)fi+1.

On the other hand,

e′if
′
1 = α′

ie
′
i+1 + β′

if
′
i+1 = α′

i(Ai+1ei+1 + Bi+1fi+1) + β′
i(Ci+1ei+1 + Di+1fi+1).

Thus, we obtain the system of equalities

Ai+1α
′
i + Ci+1β

′
i = AiC1 + αiAiD1 + γiBiD1,

Bi+1α
′
i + Di+1β

′
i = BiC1 + βiAiD1 + δiBiD1;

this yields

α′
i =

(AiC1 + D1(αiAi + γiBi))Di+1 − (BiC1 + D1(βiAi + δiBi))Ci+1

Ai+1Di+1 − Bi+1Ci+1
,

β′
i =

(BiC1 + D1(βiAi + δiBi))Ai+1 − (AiC1 + D1(αiAi + γiBi))Bi+1

Ai+1Di + 1 − Bi+1Ci+1
.

Similarly, from the equalities

f ′
if

′
1 = (Ciei + Difi)(C1e1 + D1f1)

= (CiC1 + αiCiD1 + γiDiD1)ei+1 + (DiC1 + βiCiD1 + δiDiD1)fi+1,

f ′
if

′
1 = γ′

ie
′
i+1 + δ′if

′
i+1 = γ′

i(Ai+1ei+1 + Bi+1fi+1) + δ′i(Ci+1ei+1 + Di+1fi+1),

we obtain

Ai+1γ
′
i + Ci+1δ

′
i = CiC1 + αiCiD1 + γiDiD1,

Bi+1γ
′
i + Di+1δ

′
i = DiC1 + βiCiD1 + δiDiD1,
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γ′
i =

(CiC1 + D1(αiCi + γiDi))Di+1 − (DiC1 + D1(βiCi + δiDi))Ci+1

Ai+1Di+1 − Bi+1Ci+1
,

δ′i =
(DiC1 + D1(βiCi + δiDi))Ai+1 − (CiC1 + D1(αiCi + γiDi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
.

For i = k, the following relations are also valid:

e′k = Akek + Bkfk,

f ′
k = Ckek + Dkfk.

Using the Leibniz identity for e′k+1, f ′
k+1, we find the constants α′

k, β′
k , γ′

k, δ′k:

e′k+1 = e′ke
′
1 = Ak+1ek+1 + (Bk+1 + βkAkB1)fk+1,

f ′
k+1 = f ′

ke
′
1 = Ck+1ek+1 + (Dk+1 + βkB1Ck)fk+1.

Consider

e′kf
′
1 = (AkC1 + αkAkD1 + γkBkD1)ek+1 + (BkC1 + βkAkD1 + δkBkD1)fk+1.

On the other hand,

e′kf
′
1 = α′

ke
′
k+1 + β′

kf
′
k+1 = α′

k(Ak+1ek+1 + (Bk+1 + βkAkB1)fk+1)

+ β′
k(Ck+1ek+1 + (Dk+1 + βkB1Ck)fk+1).

Therefore,

Ak+1α
′
k + Ck+1β

′
k = AkC1 + αkAkD1 + γkBkD1,

(Bk+1 + βkAkB1)α′
k + (Dk+1 + βkB1Ck)β′

k = BkC1 + βkAkD1 + δkBkD1,

whence

α′
k =

(AkC1 + D1(αkAk + γkBk))(Dk+1 + βkB1Ck) − (BkC1 + D1(βkAk + δkBk))Ck+1

Ak+1(Dk+1 + βkB1Ck) − Ck+1(Bk+1 + βkAkB1)
,

β′
k =

Ak+1(BkC1 + D1(βkAk + δkBk)) − (Bk+1 + βkAkB1)(AkC1 + D1(αkAk + γkBk))
Ak+1(Dk+1 + βkB1Ck) − Ck+1(Bk+1 + βkAkB1)

.

Similarly, from the product f ′
kf

′
1, we find the following identities:

γ′
k =

(C1Ck + D1(αkCk + γkDk))(Dk+1 + βkB1Ck) − (C1Dk + D1(βkCk + δkDk))Ck+1

Ak+1(Dk+1 + βkB1Ck) − Ck+1(Bk+1 + βkAkB1)
,

δ′k =
Ak+1(C1Dk + D1(βkCk + δkDk)) − (Bk+1 + βkAkB1)(CkC1 + D1(αkCk + γkDk))

Ak+1(Dk+1 + βkB1Ck) − Ck+1(Bk+1 + βkAkB1)
.

Using the same arguments for Leibniz algebras of type II as for type I, we obtain the following results.

Statement 4.3. Let L be a Leibniz algebra of type II. Let fk /∈ R(L), and let fk+1 ∈ R(L), where
m ≤ k ≤ n − m − 1. Then, in the general transformation of the basis, we find the dependence

e′i = Aiei + Bifi, 1 ≤ i ≤ m,

f ′
i = Ciei + Difi, 1 ≤ i ≤ m,

f ′
m+1 = (βmB1Cm + Dm+1)fm+1,

f ′
i =

[
βmB1Cm

i−1∏
l=m+1

(A1 + B1δl) + Di

]
fi, m + 2 ≤ i ≤ n − m,

where Ai, Bi, Ci, Di are defined by equalities (4.1).
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Theorem 4.4. Let L be a Leibniz algebra of type II. Let fk /∈ R(L), and let fk+1 ∈ R(L), where
m ≤ k ≤ n − m − 1. Then, for k = m, we have

α′
i =

(AiC1 + D1(αiAi + γiBi))Di+1 − BiCi+1(C1 + δiD1)
Ai+1Di+1 − Bi+1Ci+1

, 1 ≤ i ≤ m − 1,

β′
i =

Ai+1Bi(C1 + δiD1) − (AiC1 + D1(αiAi + γiBi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
, 1 ≤ i ≤ m − 1,

γ′
i =

(CiC1 + D1(αiCi + γiDi))Di+1 − DiCi+1(C1 + δiD1)
Ai+1Di+1 − Bi+1Ci+1

, 1 ≤ i ≤ m − 1,

δ′i =
Ai+1Di(C1 + δiD1) − (CiC1 + D1(αiCi + γiDi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
, 1 ≤ i ≤ m − 1,

β′
m =

βAmD1 + Bm(C1 + δmD1)
βB1Cm + Dm+1

, δ′m =
βCmD1 + Dm(C1 + δmD1)

βB1Cm + Dm+1
.

For m + 1 ≤ k ≤ n − m − 1, we have

α′
i =

(AiC1 + D1(αiAi + γiBi))Di+1 − BiCi+1(C1 + δiD1)
Ai+1Di+1 − Bi+1Ci+1

, 1 ≤ i ≤ m − 1,

β′
i =

Ai+1Bi(C1 + δiD1) − (AiC1 + D1(αiAi + γiBi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
, 1 ≤ i ≤ m − 1,

γ′
i =

(CiC1 + D1(αiCi + γiDi))Di+1 − DiCi+1(C1 + δiD1)
Ai+1Di+1 − Bi+1Ci+1

, 1 ≤ i ≤ m − 1,

δ′i =
Ai+1Di(C1 + δiD1) − (CiC1 + D1(αiCi + γiDi))Bi+1

Ai+1Di+1 − Bi+1Ci+1
, 1 ≤ i ≤ m − 1,

β′
m =

Bm(C1 + δmD1)
Dm+1

, δ′m =
Dm(C1 + δmD1)

Dm+1
,

δ′i =
Di(C1 + D1δi)

Di+1
, m + 1 ≤ i ≤ n − m − 1.

5. CONCLUSIONS

It should be noted that the solution of the classification problem consists of the following stages: the
description of the algebras satisfying the given conditions, i.e., the determination of the multiplication
table of the algebras with the least number of parameters; the determination of the relations determining
the change of the parameters in the new basis (in the general transformation of the basis); the study of
the given relations for the parameters and the determination of pairwise of nonisomorphic algebras with
given conditions. The results presented in this paper carry out the first two stages of the classification
of naturally graded Leibniz algebras with characteristic sequence equal to (n − m,m). The available
classifications for m = 2 and m = 3 ([9], [12]) show that, in the general case (i.e., for any values of m),
the classification is boundless. However, for fixed values of n and m, it can be obtained with the help of
the results of the present paper.
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