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In this paper we investigate the description of the complex Leibniz
superalgebras with nilindex n + m, where n and m (m �= 0) are
dimensions of even and odd parts, respectively. In fact, such
superalgebras with characteristic sequence equal to (n1, . . . ,nk |
m1, . . . ,ms) (where n1 + · · · + nk = n, m1 + · · · + ms = m) for
n1 � n − 1 and (n1, . . . ,nk | m) were classified in works by Ayupov
et al. (2009) [3], Camacho et al. (2010) [4], Camacho et al. (in
press) [5], Camacho et al. (in press) [6]. Here we prove that in the
case of (n1, . . . ,nk | m1, . . . ,ms), where n1 � n − 2 and m1 � m − 1
the Leibniz superalgebras have nilindex less than n + m. Thus, we
complete the classification of Leibniz superalgebras with nilindex
n + m.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

During many years the theory of Lie superalgebras has been actively studied by many mathemati-
cians and physicists. A systematic exposition of basic Lie superalgebras theory can be found in [9].
Many works have been devoted to the study of this topic, but unfortunately most of them do not deal
with nilpotent Lie superalgebras. In works [2,7,8] the problem of the description of some classes of
nilpotent Lie superalgebras has been studied. It is well known that Lie superalgebras are a generaliza-
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tion of Lie algebras. In the same way, the notion of Leibniz algebra, which was introduced in [11], can
be generalized to Leibniz superalgebras [1,10]. Some elementary properties of Leibniz superalgebras
were obtained in [1].

In the work [8] Lie superalgebras with maximal nilindex were classified. Such superalgebras are
two-generated and its nilindex is equal to n + m (where n and m are dimensions of even and odd
parts, respectively). In fact, there exists a unique Lie superalgebra of maximal nilindex. This super-
algebra is a filiform Lie superalgebra (the characteristic sequence is equal to (n − 1,1 | m)) and we
mention about paper [2], where some crucial properties of filiform Lie superalgebras are given.

For nilpotent Leibniz superalgebras the description of the maximal nilindex case (nilpotent Leibniz
superalgebras distinguished by the feature of being single-generated) is not difficult and was done
in [1].

However, the description of Leibniz superalgebras of nilindex n + m is a very problematic one and
it needs to solve many technical tasks. Therefore, they can be studied by applying restrictions on their
characteristic sequences. In the present paper we consider Leibniz superalgebras with characteristic
sequence (n1, . . . ,nk | m1, . . . ,ms) (n1 � n − 2 and m1 � m − 1) and nilindex n + m. Recall, that such
superalgebras for n1 � n − 1 or m1 = m have been already classified in works [3–6]. Namely, we prove
that a Leibniz superalgebra with characteristic sequence equal to (n1, . . . ,nk | m1, . . . ,ms) (n1 � n − 2
and m1 � m − 1) has nilindex less than n + m. Therefore, we complete the classification of Leibniz
superalgebras with nilindex n + m.

It should be noted that in our study the natural gradation of even part of a Leibniz superalgebra
play one of the crucial roles. In fact, we use some properties of naturally graded Lie and Leibniz
algebras for obtaining the convenient basis of even part of the superalgebra (so-called adapted basis).

Throughout this work we shall consider spaces and (super)algebras over the field of complex num-
bers. By asterisks (∗) we denote the appropriate coefficients at the basic elements of a superalgebra.

2. Preliminaries

Recall the notion of Leibniz superalgebras.

Definition 2.1. A Z2-graded vector space L = L0 ⊕ L1 is called a Leibniz superalgebra if it is equipped
with a product [−,−] which satisfies the following conditions:

1. [Lα, Lβ ] ⊆ Lα+β (mod 2) ,
2. [x, [y, z]] = [[x, y], z] − (−1)αβ [[x, z], y]-Leibniz superidentity,

for all x ∈ L, y ∈ Lα , z ∈ Lβ and α,β ∈ Z2.

The vector spaces L0 and L1 are said to be even and odd parts of the superalgebra L, respectively.
Evidently, even part of the Leibniz superalgebra is a Leibniz algebra.

If the identity

[x, y] = −(−1)αβ [y, x]

holds for any x ∈ Lα and y ∈ Lβ , then the Leibniz superidentity becomes to the Jacobi superiden-
tity. Thus, Leibniz superalgebras are a simultaneous generalization of Lie superalgebras and Leibniz
algebras.

We denote by Leibn,m the set of all Leibniz superalgebras with the dimensions of the even and odd
parts, respectively equal to n and m.

For a given Leibniz superalgebra L we define its descending central sequence of two-sided ideals
as follows:

L1 = L, Lk+1 = [
Lk, L

]
, k � 1.
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Definition 2.2. A Leibniz superalgebra L is called nilpotent, if there exists s ∈ N such that Ls = 0. The
minimal number s with this property is called nilindex of the superalgebra L.

Due to coincidence the notions of right nilpotence and nilpotence for Leibniz superalgebras, Defi-
nition 2.2 is agreed with the nilpotence in the case of Lie superalgebras.

Definition 2.3. The set

R(L) = {
z ∈ L

∣∣ [L, z] = 0
}

is called the right annihilator of a superalgebra L.

Using the Leibniz superidentity, it is easy to check that R(L) is an ideal of the superalgebra L.
Moreover, the elements of the form [a,b] + (−1)αβ [b,a] (a ∈ Lα , b ∈ Lβ ) belong to R(L).

The following theorem describes nilpotent Leibniz superalgebras with maximal nilindex.

Theorem 2.1. (See [1].) Let L be a Leibniz superalgebra of Leibn,m with nilindex equal to n + m + 1. Then L is
isomorphic to one of the following non-isomorphic superalgebras:

[ei, e1] = ei+1, 1 � i � n − 1, m = 0;
{ [ei, e1] = ei+1, 1 � i � n + m − 1,

[ei, e2] = 2ei+2, 1 � i � n + m − 2

(omitted products are equal to zero).

Remark 2.1. From the assertion of Theorem 2.1 it follows that in case of non-trivial odd part L1 of the
superalgebra L there are two possibilities for n and m, namely, m = n if n + m is even and m = n + 1
if n + m is odd. Moreover, it is clear that the Leibniz superalgebra has the maximal nilindex if and
only if it is single-generated.

Let L = L0 ⊕ L1 be a nilpotent Leibniz superalgebra. For an arbitrary element x ∈ L0, the right mul-
tiplication operator Rx : L → L (given by Rx(y) = [y, x]) is a nilpotent endomorphism of the space Li ,
where i ∈ {0,1}. Taking into account the property of complex endomorphisms we can consider the
Jordan form for Rx . For the operator Rx we denote by Ci(x) (i ∈ {0,1}) the descending sequence of its
Jordan blocks dimensions. Consider the lexicographical order on the set Ci(L0).

Definition 2.4. A sequence

C(L) =
(

max
x∈L0\L2

0

C0(x)
∣∣∣ max

x̃∈L0\L2
0

C1(x̃)
)

is said to be the characteristic sequence of the Leibniz superalgebra L.

Similarly to [7] (Corollary 3.0.1) it can be proved that the characteristic sequence is invariant under
isomorphism.

Since Leibniz superalgebras from Leibn,m with nilindex n + m and with characteristic sequence
equal to (n1, . . . ,nk | m1, . . . ,ms) either n1 � n−1 or m1 = m were already classified in [3–6], we shall
reduce our investigation to the case of the characteristic sequence (n1, . . . ,nk | m1, . . . ,ms), where
n1 � n − 2 and m1 � m − 1.

From Definition 2.4 we have that a Leibniz algebra L0 has characteristic sequence (n1, . . . ,nk). Let
l ∈ N be the nilindex of the Leibniz algebra L0. Since n1 � n − 2, then we have l � n − 1 and the
Leibniz algebra L0 has at least two generators (the elements which belong to the set L0 \ L2

0).
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For the completeness of the statement below we recall the classifications of the papers [3–6,8].

Leib1,m:

{ [yi, x1] = yi+1, 1 � i � m − 1.

Leibn,1:

{ [xi, x1] = xi+1, 1 � i � n − 1,

[y1, y1] = αxn, α ∈ {0,1}.
Leib2,2:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[y1, x1] = y2,

[x1, y1] = 1

2
y2,

[x2, y1] = y2,

[y1, x2] = 2y2,

[y1, y1] = x2,

⎧⎪⎪⎨
⎪⎪⎩

[y1, x1] = y2,

[x2, y1] = y2,

[y1, x2] = 2y2,

[y1, y1] = x2.

Leib2,m , m is odd:

⎧⎪⎪⎨
⎪⎪⎩

[x1, x1] = x2, m � 3,

[yi, x1] = yi+1, 1 � i � m − 1,

[x1, yi] = −yi+1, 1 � i � m − 1,

[yi, ym+1−i] = (−1)i+1x2, 1 � i � m − 1,

{ [yi, x1] = −[x1, yi] = yi+1, 1 � i � m − 1,

[ym+1−i, yi] = (−1)i+1x2, 1 � i � m + 1

2
.

In order to present the classification of Leibniz superalgebras with characteristic sequence (n −
1,1 | m), n � 3 and nilindex n + m we need to introduce the following families of superalgebras:

Leibn,n−1:

L(α4,α5, . . . ,αn, θ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, x1] = x3,

[xi, x1] = xi+1, 2 � i � n − 1,

[y j, x1] = y j+1, 1 � j � n − 2,

[x1, y1] = 1

2
y2,

[xi, y1] = 1

2
yi, 2 � i � n − 1,

[y1, y1] = x1,

[y j, y1] = x j+1, 2 � j � n − 1,

[x1, x2] = α4x4 + α5x5 + · · · + αn−1xn−1 + θxn,

[x j, x2] = α4x j+2 + α5x j+3 + · · · + αn+2− jxn, 2 � j � n − 2,

[y1, x2] = α4 y3 + α5 y4 + · · · + αn−1 yn−2 + θ yn−1,

[y j, x2] = α4 y j+2 + α5 y j+3 + · · · + αn+1− j yn−1, 2 � j � n − 3.

G(β4, β5, . . . , βn, γ ):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, x1] = x3,

[xi, x1] = xi+1, 3 � i � n − 1,

[y j, x1] = y j+1, 1 � j � n − 2,

[x1, x2] = β4x4 + β5x5 + · · · + βnxn,

[x2, x2] = γ xn,

[x j, x2] = β4x j+2 + β5x j+3 + · · · + βn+2− j xn, 3 � j � n − 2,

[y1, y1] = x1,

[y j, y1] = x j+1, 2 � j � n − 1,

[x1, y1] = 1

2
y2,

[xi, y1] = 1

2
yi, 3 � i � n − 1,

[y j, x2] = β4 y j+2 + β5 y j+3 + · · · + βn+1− j yn−1, 1 � j � n − 3.

Leibn,n:

M(α4,α5, . . . ,αn, θ, τ ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, x1] = x3,

[xi, x1] = xi+1, 2 � i � n − 1,

[y j, x1] = y j+1, 1 � j � n − 1,

[x1, y1] = 1

2
y2,

[xi, y1] = 1

2
yi, 2 � i � n,

[y1, y1] = x1,

[y j, y1] = x j+1, 2 � j � n − 1,

[x1, x2] = α4x4 + α5x5 + · · · + αn−1xn−1 + θxn,

[x2, x2] = γ4x4,

[x j, x2] = α4x j+2 + α5x j+3 + · · · + αn+2− j xn, 3 � j � n − 2,

[y1, x2] = α4 y3 + α5 y4 + · · · + αn−1 yn−2 + θ yn−1 + τ yn,

[y2, x2] = α4 y4 + α5 y5 + · · · + αn−1 yn−1 + θ yn,

[y j, x2] = α4 y j+2 + α5 y j+3 + · · · + αn+2− j yn, 3 � j � n − 2.

H(β4, β5, . . . , βn, δ, γ ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, x1] = x3,

[xi, x1] = xi+1, 3 � i � n − 1,

[y j, x1] = y j+1, 1 � j � n − 2,

[x1, x2] = β4x4 + β5x5 + · · · + βnxn,

[x2, x2] = γ xn,

[x j, x2] = β4x j+2 + β5x j+3 + · · · + βn+2− j xn, 3 � j � n − 2,

[y1, y1] = x1,

[y j, y1] = x j+1, 2 � j � n − 1,

[x1, y1] = 1

2
y2,

[xi, y1] = 1

2
yi, 3 � i � n − 1,

[y1, x2] = β4 y3 + β5 y4 + · · · + βn yn−1 + δyn,

[y , x ] = β y + β y + · · · + β y , 2 � j � n − 2.
j 2 4 j+2 5 j+3 n+2− j n
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Analogously, for the Leibniz superalgebras with characteristic sequence (n | m − 1,1), n � 2 we
introduce the following families of superalgebras:

Leibn,n+1:
E(γ ,β[ n+4

2 ], β[ n+4
2 ]+1, . . . , βn, β):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xi, x1] = xi+1, 1 � i � n − 1,

[y j, x1] = y j+1, 1 � j � n − 1,

[xi, y1] = 1

2
yi+1, 1 � i � n − 1,

[y j, y1] = x j, 1 � j � n,

[yn+1, yn+1] = γ xn,

[xi, yn+1] =
n+1−i∑

k=[ n+4
2 ]

βk yk−1+i, 1 � i �
[

n − 1

2

]
,

[y1, yn+1] = −2
n∑

k=[ n+4
2 ]

βkxk−1 + βxn,

[y j, yn+1] = −2
n+2− j∑

k=[ n+4
2 ]

βkxk−2+ j, 2 � j �
[

n + 1

2

]
.

Leibn,n+2:
F (β[ n+5

2 ], β[ n+5
2 ]+1, . . . , βn+1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xi, x1] = xi+1, 1 � i � n − 1,

[y j, x1] = y j+1, 1 � j � n,

[xi, y1] = 1

2
yi+1, 1 � i � n,

[y j, y1] = x j, 1 � j � n,

[xi, yn+2] =
n+2−i∑

k=[ n+5
2 ]

βk yk−1+i, 1 � i �
[

n

2

]
,

[y j, yn+2] = −2
n+2− j∑

k=[ n+5
2 ]

βkxk−2+ j, 1 � j �
[

n

2

]
.

Let us introduce also the following operators which act on k-dimensional vectors:

V 0
j,k(α1,α2, . . . ,αk) = (

0, . . . ,0,
j
1, δ

j
√

δ j+1 S j+1
m, j α j+1, δ

j
√

δ j+2 S j+2
m, j α j+2, . . . , δ

j
√

δk Sk
m, jαk

);
V 1

j,k(α1,α2, . . . ,αk) = (
0, . . . ,0,

j
1, S j+1

m, j α j+1, S j+2
m, j α j+2, . . . , Sk

m, jαk
);

V 2
j,k(α1,α2, . . . ,αk) = (

0, . . . ,0,
j
1, S2( j+1)+1

m,2 j+1 α j+1, S2( j+2)+1
m,2 j+1 α j+2, . . . , S2k+1

m,2 j+1αk
);
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V 0
k+1,k(α1,α2, . . . ,αk) = V 1

k+1,k(α1,α2, . . . ,αk) = V 2
k+1,k(α1,α2, . . . ,αk) = (0,0, . . . ,0);

W s,k
(
0,0, . . . ,

j−1
0 ,

j
1, S j+1

m, j α j+1, S j+2
m, j α j+2, . . . , Sk

m, jαk, γ
)

= (
0,0, . . . ,

j
1,0, . . . ,

s+ j
1 , Ss+1

m,s αs+ j+1, Ss+2
m,s αs+ j+2, . . . , Sk− j

m,s αk, Sk+6−2 j
m,s γ

);
Wk+1− j,k

(
0,0, . . . ,

j−1
0 ,

j
1, S j+1

m, j α j+1, S j+2
m, j α j+2, . . . , Sk

m, jαk, γ
)

= (0,0, . . . ,
j
1,0, . . . ,1);

Wk+2− j,k
(
0,0, . . . ,

j−1
0 ,

j
1, S j+1

m, j α j+1, S j+2
m, j α j+2, . . . , Sk

m, jαk, γ
) =

= (0,0, . . . ,
j
1,0, . . . ,0),

where k ∈ N , δ = ±1, 1 � j � k, 1 � s � k − j, and Sm,t = cos 2πm
t + i sin 2πm

t (m = 0,1, . . . , t − 1).
Below we present the complete list of pairwise non-isomorphic Leibniz superalgebras with nilindex

n + m and:

characteristic sequence equal to (n − 1,1 | m):

L
(

V 1
j,n−3(α4,α5, . . . ,αn), Sn−3

m, j θ
)
, 1 � j � n − 3,

L(0,0, . . . ,0,1), L(0,0, . . . ,0), G(0,0, . . . ,0,1), G(0,0, . . . ,0),

G
(
W s,n−2

(
V 1

j,n−3(β4, β5, . . . , βn), γ
))

, 1 � j � n − 3, 1 � s � n − j,

M
(

V 1
j,n−2(α4,α5, . . . ,αn), Sn−3

m, j θ
)
, 1 � j � n − 2,

M(0,0, . . . ,0,1), M(0,0, . . . ,0), H(0,0, . . . ,0,1), H(0,0, . . . ,0),

H
(
W s,n−1

(
V 1

j,n−2(β4, β5, . . . , βn), γ
))

, 1 � j � n − 2, 1 � s � n + 1 − j;

characteristic sequence equal to (n | m − 1,1) if n is odd (i.e. n = 2q − 1):

E
(
1, δβq+1, V 0

j,q−2(βq+2, βq+3, . . . , βn),0
)
, βq+1 �= ±1

2
, 1 � j � q − 1,

E
(
1, βq+1, V 0

j,q−1(βq+2, βq+3, . . . , βn, β)
)
, βq+1 = ±1

2
, 1 � j � q,

E
(
0,1, V 0

j,q−2(βq+2, βq+3, . . . , βn),0
)
, 1 � j � q − 1,

E
(
0,0, W s,q−1

(
V 1

j,q−1(βq+2, βq+3, . . . , βn, β)
))

, 1 � j � q − 1, 1 � s � q − j,

E(0,0, . . . ,0);
if n is even (i.e. n = 2q):

E
(
1, V 2

j,q−1(βq+2, βq+3, . . . , βn, ),0
)
, 1 � j � q,

E
(
0, W s,q

(
V 1

j,q(βq+2, βq+3, . . . , βn, β)
))

, 1 � j � q, 1 � s � q + 1 − j,

E(0,0, . . . ,0);
F
(
W s,n+2−[ n+5 ]

(
V 1

j,n+2−[ n+5 ](β[ n+5 ], β[ n+5 ]+1, . . . , βn+1)
))

,

2 2 2 2
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where 1 � j � n + 2 − [n+5
2 ], 1 � s � n + 3 − [n+5

2 ] − j,

F (0,0, . . . ,0).

For a given Leibniz algebra A with nilindex l, we put gr(A)i = Ai/Ai+1, 1 � i � l − 1 and gr(A) =
gr(A)1 ⊕ gr(A)2 ⊕ · · · ⊕ gr(A)l−1. Then [gr(A)i, gr(A) j] ⊆ gr(A)i+ j and we obtain the graded algebra
gr(A).

Definition 2.5. The gradation previously constructed is called the natural gradation. If a Leibniz algebra
G is isomorphic to gr(A), then we say that the algebra G is naturally graded Leibniz algebra.

3. The main result

Let L be a Leibniz superalgebra with characteristic sequence (n1, . . . ,nk | m1, . . . ,ms), where
n1 � n − 2, m1 � m − 1 and nilindex n + m. Since the second part of the characteristic sequence
of the Leibniz superalgebra L is equal to (m1, . . . ,ms) then by Definition 2.4, there exists a nilpotent
endomorphism Rx (x ∈ L0 \ L2

0) of the space L1 such that its Jordan form consists of s Jordan blocks.
Therefore, we can assume the existence of an adapted basis {y1, y2, . . . , ym} of the subspace L1, such
that { [y j, x] = y j+1, j /∈ {m1,m1 + m2, . . . ,m1 + m2 + · · · + ms},

[y j, x] = 0, j ∈ {m1,m1 + m2, . . . ,m1 + m2 + · · · + ms}, (1)

for some x ∈ L0 \ L2
0.

Further we shall use a homogeneous basis {x1, . . . , xn} with respect to the natural gradation of the
Leibniz algebra L0, which is also agreed with the lower central sequence of L.

The main result of the paper establishes that the nilindex of a Leibniz superalgebra L with charac-
teristic sequence (n1, . . . ,nk | m1, . . . ,ms), n1 � n − 2,m1 � m − 1 is less than n + m.

According to Theorem 2.1 we have the description of single-generated Leibniz superalgebras, which
have nilindex n + m + 1. If the number of generators is greater than two, then the superalgebra has
nilindex less than n + m. Therefore, we should consider the case of two-generated superalgebras.

The possible cases for the generators are:

1. Both generators lie in L0, i.e. dim(L2)0 = n − 2 and dim(L2)1 = m.
2. One generator lies in L0 and another one lies in L1, i.e. dim(L2)0 = n − 1 and dim(L2)1 = m − 1.
3. Both generators lie in L1, i.e. dim(L2)0 = n and dim(L2)1 = m − 2.

Moreover, a two-generated superalgebra L has nilindex n + m if and only if dim Lk = n + m − k, for
2 � k � n + m.

Since m �= 0 we omit the case where both generators lie in even part.

3.1. The case of one generator in L0 and another one in L1

Since dim(L2)0 = n − 1 and dim(L2)1 = m − 1 then there exist some m j , 0 � j � s − 1 (here we
assume m0 = 0) such that ym1+···+m j+1 /∈ L2. By a shifting of basic elements we can assume that
m j = m0, i.e. the basic element y1 can be chosen as a generator of the superalgebra L. Of course, by
this shifting the condition from definition of the characteristic sequence m1 � m2 � · · · � ms can be
broken, but further we shall not use the condition.

Let L = L0 ⊕ L1 be a two generated Leibniz superalgebra from Leibn,m with characteristic sequence
equal to (n1, . . . ,nk | m1, . . . ,ms) and let {x1, . . . , xn, y1, . . . , ym} be a basis of the L.

Lemma 3.1. Let us assume that one generator of L lies in L0 and the other one lies in L1 . Then x1 and y1 can
be chosen as generators of the L. Moreover, we can suppose x1 instead of the element x in equality (1).
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Proof. As it was mentioned above, y1 can be chosen as the first generator of L. If x ∈ L \ L2 then the
assertion of the lemma is evident. If x ∈ L2 then there exists some i0 (2 � i0) such that xi0 ∈ L \ L2.
Set x′

1 = Ax + xi0 for A �= 0, then x′
1 is a generator of the superalgebra L (since x′

1 ∈ L \ L2). Moreover,
making the following transformation on the basis of L1 as follows

{
y′

j = y j, j ∈ {1,m1 + 1, . . . ,m1 + m2 + · · · + ms−1 + 1},
y′

j = [
y′

j−1, x′
1

]
, j /∈ {1,m1 + 1, . . . ,m1 + m2 + · · · + ms−1 + 1},

and taking sufficiently large value of the parameter A we preserve the equality (1). Thus, in the basis
{x′

1, x2, . . . , xn, y′
1, y′

2, . . . , y′
m} the elements x′

1 and y′
1 are generators. �

Due to Lemma 3.1 further we shall suppose that {x1, y1} are generators of the Leibniz superalge-
bra L. Therefore,

L2 = {x2, x3, . . . , xn, y2, y3, . . . , ym}.
Let us introduce the notations:

[xi, y1] =
m∑

j=2

αi, j y j, 1 � i � n, [yi, y1] =
n∑

j=2

βi, jx j, 1 � i � m. (2)

Without loss of generality we can assume that ym1+···+mi+1 ∈ Lti \ Lti+1, where ti < t j for 1 � i <

j � s − 1.
Since dim(L3)0 = n − 1, then we have

L3 = {x2, x3, . . . , xn, y3, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym},
where (B1, B2) �= (0,0).

Analyzing the way the element x2 can be obtained, we conclude that there exist i0 (2 � i0 � m)

such that [yi0 , y1] = ∑n
j=2 βi0,2x j , βi0,2 �= 0. Indeed, due to C(L0) = (n1,n2, . . . ,nk) with n1 � n − 2

and chosen homogeneous basis {x1, x2, . . . , xn} with respect to the natural gradation of the Leibniz
algebra L0, we assume that x2 is the generator of the L0. Therefore, x2 cannot be generated by the
products [xi, x1], 1 � i � n and hence, it generated by a product [yi0 , y1] for some i0.

Let us show that i0 /∈ {m1 + 1, . . . ,m1 + · · · + ms−1 + 1}. It is known that the elements
ym1+m2+1, . . . , ym1+···+ms−1+1 are generated from the products [xi, y1] (2 � i � n). Due to nilpotency
of L we get i0 /∈ {m1 + m2 + 1, . . . ,m1 + · · · + ms−1 + 1}. If ym1+1 is generated by [x1, y1], i.e. in the
expression [x1, y1] = ∑m

j=2 α1, j y j , α1,m1+1 �= 0 then we consider the product

[[x1, y1], y1
] =

[
m∑

j=2

α1, j y j, y1

]
= α1,m1+1βm1+1,2x2 +

∑
i�3

(∗)xi .

On the other hand,

[[x1, y1], y1
] = 1

2

[
x1, [y1, y1]

] = 1

2

[
x1,

n∑
j=2

β1, jx j

]
=

∑
i�3

(∗)xi .

Comparing the coefficients at the corresponding basic elements we obtain α1,m1+1βm1+1,2 = 0,
which implies βm1+1,2 = 0. It means that i0 �= m1 + 1. Therefore, βi0,2 �= 0, where i0 /∈ {m1 +
1, . . . ,m1 + · · · + ms−1 + 1}.
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Case y2 /∈ L3. Then B2 �= 0. Let h ∈ N be a number such that x2 ∈ Lh \ Lh+1, that is,

Lh = {x2, x3, . . . , xn, yh, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}, h � 3,

Lh+1 = {x3, x4, . . . , xn, yh, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}.

Since the elements B1 y2 + B2 ym1+1, ym1+m2+1, . . . , ym1+···+ms−1+1 are generated from the multi-
plications [xi, y1],2 � i � n it follows that h � m1 + 1.

So, x2 can be obtained only from the product [yh−1, y1] and thereby βh−1,2 �= 0. Making the
change x′

2 = ∑n
j=2 βh−1, j x j we can assume that [yh−1, y1] = x2.

Now let p be a natural number such that yh ∈ Lh+p \ Lh+p+1. Then for the powers of superalgebra
L we have the following

Lh+p = {xp+2, xp+3, . . . , xn, yh, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}, p � 1,

Lh+p+1 = {xp+2, xp+3, . . . , xn, yh+1, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}.

In the following lemma the useful expression for the products [yi, y j] is presented.

Lemma 3.2. The equality:

[yi, y j] = (−1)h−1−iCh−1−i
j−1 xi+ j+2−h +

∑
t>i+ j+2−h

(∗)xt , (3)

1 � i � h − 1, h − i � j � min{h − 1,h − 1 + p − i}, holds.

Proof. The proof is deduced by the induction on j at any value of i. �
For the natural number p we have the following

Lemma 3.3. Under the above conditions p = 1.

Proof. Assume the contrary, i.e. p > 1. Then we can suppose

[xi, x1] = xi+1, 2 � i � p, [xp+1, y1] =
m∑

j=h

αp+1, j y j, αp+1,h �= 0.

Using the equality (3) we consider the following chain of equalities

[
y1, [yh−1, x1]

] = [[y1, yh−1], x1
] − [[y1, x1], yh−1

] = (−1)h−2x3 +
∑
t�4

(∗)xt

− (−1)h−3(h − 2)x3 +
∑
t�4

(∗)xt = (−1)h(h − 1)x3 +
∑
t�4

(∗)xt .

If h � m1, then [y1, [yh−1, x1]] = [y1, yh]. Since yh ∈ Lh+p and p > 1 then in the decomposition of
[y1, yh] the coefficients at the basic elements x2 and x3 are equal to zero. Therefore, from the above
equalities we get a contradiction with assumption p > 1.

If h = m1 + 1, then [y1, [yh−1, x1]] = 0 and we also obtain the irregular equality (−1)h(h − 1)x3 +∑
t�4(∗)xt = 0. Therefore, the proof of the lemma is completed. �
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We summarize our main result of the considered case in the following

Theorem 3.1. Let L = L0 ⊕ L1 be a Leibniz superalgebra from Leibn,m with characteristic sequence equal to
(n1, . . . ,nk | m1, . . . ,ms), where n1 � n − 2, m1 � m − 1 and let dim(L3)0 = n − 1 with y2 /∈ L3 . Then L has
nilindex less than n + m.

Proof. Let us assume the contrary, i.e. the nilindex of the superalgebra L is equal to n + m. Then
according to Lemma 3.3 we have

Lh+2 = {x3, . . . , xn, yh+1, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}.

Since yh /∈ Lh+2, it follows that

α2,h �= 0, αi,h = 0 for i > 2.

Consider the product

[[yh−1, y1], y1
] = 1

2

[
yh−1, [y1, y1]

] = 1

2

[
yh−1,

n∑
i=2

β1,i xi

]
.

The element yh−1 belongs to Lh−1 and elements x2, x3, . . . , xn lie in L3. Hence 1
2 [yh−1,∑n

i=2 β1,i xi] ∈ Lh+2. Since yh /∈ Lh+2, we obtain that [[yh−1, y1], y1] = ∑
j�h+1(∗)y j .

On the other hand,

[[yh−1, y1], y1
] = [x2, y1] = α2,h yh +

m∑
j=h+1

α2, j y j .

Comparing the coefficients at the basic elements we obtain α2,h = 0, which is a contradiction with
the assumption that the superalgebra L has nilindex equal to n +m and therefore the assertion of the
theorem is proved. �
Case y2 ∈ L3. Then B2 = 0 and the following theorem is true.

Theorem 3.2. Let L = L0 ⊕ L1 be a Leibniz superalgebra from Leibn,m with characteristic sequence equal to
(n1, . . . ,nk | m1, . . . ,ms), where n1 � n − 2, m1 � m − 1 and let dim(L3)0 = n − 1 with y2 ∈ L3 . Then L has
nilindex less than n + m.

Proof. We shall prove the assertion of the theorem by the contrary method, i.e. we assume that the
nilindex of the superalgebra L equal to n + m. The condition y2 ∈ L3 implies

L3 = {x2, x3, . . . , xn, y2, . . . , ym1 , ym1+2, . . . , ym}.

Then α1,m1+1 �= 0 and αi,m1+1 = 0 for i � 2. The element y2 is generated by the products [xi, y1],
i � 2 which implies y2 ∈ L4. Since [ym1+1, y1] = [[x1, y1], y1] = 1

2 [x1, [y1, y1]] = 1
2 [x1,

∑
(∗)xi] and x2

is a generator of the Leibniz algebra L0 then x2 cannot be generated from the product [ym1+1, y1].
Thereby x2 also belongs to L4.
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Consider the equality

[[x1, y1], x1
] = [

x1, [y1, x1]
] + [[x1, x1], y1

] = [x1, y2] −
[∑

i�3

(∗)xi, y1

]
.

From this it follows that the product [[x1, y1], x1] belongs to L5 (and therefore belongs to L4).
On the other hand,

[[x1, y1], x1
] =

[
m∑

j=2

α1, j y j, x1

]
= α1,2 y3 + · · · + α1,m1−1 ym1 + α1,m1+1 ym1+2 + · · · + α1,m−1 ym.

Since α1,m1+1 �= 0, we obtain that ym1+2 ∈ L4. Thus, we have L4 = {x2, x3, . . . , xn, y2, . . . , ym1 ,

ym1+2, . . . , ym}, that is, L4 = L3, which is in contradiction with the nilpotency of the superalgebra L.
Thus, we get a contradiction with the assumption that the superalgebra L has nilindex equal to

n + m and therefore the assertion of the theorem is proved. �
From Theorems 3.1 and 3.2 we obtain that a Leibniz superalgebra L satisfying the condition

dim(L3)0 = n − 1 has nilindex less than n + m.
The investigation of Leibniz superalgebras satisfying the property dim(L3)0 = n − 2 shows that the

restriction to nilindex depends on the structure of the Leibniz algebra L0. Below we present some
necessary remarks on nilpotent Leibniz algebras.

Let A = {z1, z2, . . . , zn} be an n-dimensional nilpotent Leibniz algebra of nilindex l (l < n). Note
that the algebra A is not single-generated.

Proposition 3.1. (See [6].) Let gr(A) be a naturally graded non-Lie Leibniz algebra. Then dim A3 � n − 4.

3.2. The case of both generators lie in L0

The result on nilindex of superalgebras satisfying the condition dim(L3)0 = n − 2 is established in
the following two theorems.

Theorem 3.3. Let L = L0 ⊕ L1 be a Leibniz superalgebra from Leibn,m with characteristic sequence (n1, . . . ,nk |
m1, . . .ms), where n1 � n − 2, m1 � m − 1, dim(L3)0 = n − 2 and dim L3

0 � n − 4. Then L has nilindex less
than n + m.

Proof. Let us assume the contrary, i.e. the nilindex of the superalgebra L is equal to n + m. According
to the condition dim(L3)0 = n − 2 we have

L3 = {x3, x4, . . . , xn, y2, y3, . . . , ym}.
From the condition dim L3

0 � n − 4 it follows that there exist at least two basic elements, which do
not belong to L3

0. Without loss of generality, one can assume x3, x4 /∈ L3
0.

Let h be a natural number such that x3 ∈ Lh+1 \ Lh+2, then we have

Lh+1 = {x3, x4, . . . , xn, yh, yh+1, . . . , ym}, h � 2, βh−1,3 �= 0,

Lh+2 = {x4, . . . , xn, yh, yh+1, . . . , ym}.
Let us suppose x3 /∈ L2

0. Then we have that x3 cannot be obtained by the products [xi, x1], with
2 � i � n. Therefore, it is generated by products [y j, y1],2 � j � m, which implies h � 3 and α2,2 �= 0.
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If h = 3, then β2,3 �= 0.
Consider the chain of equalities

[[x2, y1], y1
] =

[
m∑

j=2

α2, j y j, y1

]
=

m∑
j=2

α2, j[y j, y1] = α2,2β2,3x3 +
∑
i�4

(∗)xi .

On the other hand,

[[x2, y1], y1
] = 1

2

[
x2, [y1, y1]

] = 1

2

[
x2,

n∑
i=2

β1,i xi

]
= 1

2

n∑
i=2

β1,i[x2, xi] =
∑
i�4

(∗)xi .

Comparing the coefficients at the corresponding basic elements, we get a contradiction with
β2,3 = 0. Thus, h � 4.

Since y2 ∈ L3 and h � 4 we have yh−2 ∈ Lh−1, which implies [yh−2, y2] ∈ Lh+2 = {x4, . . . , xn, yh,

yh+1, . . . , ym}. It means that in the decomposition [yh−2, y2] the coefficient at the basic element x3
is equal to zero.

On the other hand,

[yh−2, y2] = [
yh−2, [y1, x1]

] = [[yh−2, y1], x1
] − [[yh−2, x1], y1

]

=
[

n∑
i=2

βh−2,ixi, x1

]
− [yh−1, y1] = −βh−1,3x3 +

∑
i�4

(∗)xi .

Hence, we get βh−1,3 = 0, which is obtained from the assumption x3 /∈ L2
0.

Therefore, we have x3, x4 ∈ L2
0 \ L3

0. The condition x4 /∈ L3
0 implies that x4 cannot be obtained by

the products [xi, x1], with 3 � i � n. Therefore, it is generated by products [y j, y1],h � j � m. Hence,
Lh+3 = {x4, . . . , xn, yh+1, . . . , ym} and yh ∈ Lh+2 \ Lh+3, which implies α3,h �= 0.

Let p (p � 3) be a natural number such that x4 ∈ Lh+p \ Lh+p+1.
Suppose that p = 3. Then βh,4 �= 0.
Consider the chain of equalities

[[x3, y1], y1
] =

[
m∑

j=h

α3, j y j, y1

]
=

m∑
j=h

α3, j[y j, y1] = α3,hβh,4x4 +
∑
i�5

(∗)xi .

On the other hand,

[[x3, y1], y1
] = 1

2

[
x3, [y1, y1]

] = 1

2

[
x3,

n∑
i=2

β1,i xi

]
= 1

2

n∑
i=2

β1,i[x3, xi] =
∑
i�5

(∗)xi .

Comparing the coefficients at the corresponding basic elements in these equations we get
α3,hβh,4 = 0, which implies βh,4 = 0. This is a contradiction with the assumption p = 3. Therefore,
p � 4 and for the powers of the descending lower sequences we have
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Lh+p−2 = {x4, . . . , xn, yh+p−4, . . . , ym},
Lh+p−1 = {x4, . . . , xn, yh+p−3, . . . , ym},

Lh+p = {x4, . . . , xn, yh+p−2, . . . , ym},
Lh+p+1 = {x5, . . . , xn, yh+p−2, . . . , ym}.

It is easy to see that in the decomposition [yh+p−3, y1] = ∑n
i=4 βh+p−3,i xi we have βh+p−3,4 �= 0.

Consider the equalities

[yh+p−4, y2] = [
yh+p−4, [y1, x1]

] = [[yh+p−4, y1], x1
] − [[yh+p−4, x1], y1

]
=

[
n∑

i=4

βh+p−3,i xi, x1

]
− [yh+p−3, y1] = −βh+p−3,4x4 +

∑
i�5

(∗)xi .

Since yh+p−4 ∈ Lh+p−2, y2 ∈ L3 and βh+p−3,4 �= 0, then the element x4 should lie in Lh+p+1, but
this fact is in contradiction with Lh+p+1 = {x5, . . . , xn, yh+p−2, . . . , ym}. Thus, the superalgebra L has
nilindex less than n + m. �

From Theorem 3.3 we conclude that a Leibniz superalgebra L = L0 ⊕ L1 with characteristic se-
quence (n1, . . . ,nk | m1, . . . ,ms), where n1 � n − 2, m1 � m − 1, and nilindex n + m can appear only
if dim L3

0 � n − 3. Taking into account the condition n1 � n − 2 and the properties of naturally graded
subspaces gr(L0)1, gr(L0)2 we get dim L3

0 = n − 3.
Let dim L3

0 = n − 3. Then

gr(L0)1 = {x1, x2}, gr(L0)2 = {x3}.

From Proposition 3.1 the naturally graded Leibniz algebra gr(L0) is a Lie algebra, i.e. the following
multiplication rules hold

⎧⎪⎪⎨
⎪⎪⎩

[x1, x1] = 0,

[x2, x1] = x3,

[x1, x2] = −x3,

[x2, x2] = 0.

Using these products for the corresponding products in the Leibniz algebra L0 with the basis
{x1, x2, . . . , xn} we have

⎧⎪⎪⎨
⎪⎪⎩

[x1, x1] = γ1,4x4 + γ1,5x5 + · · · + γ1,nxn,

[x2, x1] = x3,

[x1, x2] = −x3 + γ2,4x4 + γ2,5x5 + · · · + γ2,nxn,

[x2, x2] = γ3,4x4 + γ3,5x5 + · · · + γ3,nxn.

(4)

Theorem 3.4. Let L = L0 ⊕ L1 be a Leibniz superalgebra from Leibn,m with characteristic sequence (n1, . . . ,nk |
m1, . . . ,ms), where n1 � n − 2, m1 � m − 1, dim(L3)0 = n − 2 and dim L3

0 = n − 3. Then L has nilindex less
than n + m.

Proof. Let us suppose the contrary, i.e. the nilindex of the superalgebra L is equal to n +m. Then from
the condition dim(L3)0 = n − 2 we obtain
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L2 = {x2, x3, . . . , xn, y2, . . . , ym},
L3 = {x3, x4, . . . , xn, y2, . . . , ym},
L4 ⊃ {x4, . . . , xn, y3, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}, (B1, B2) �= (0,0).

Suppose x3 /∈ L4. Then

L4 = {x4, . . . , xn, y2, . . . , ym1 , ym1+1, . . . , ym}.

Let B ′
1 y2 + B ′

2 ym1+1 be an element which earlier disappears in the descending lower sequence for L.
Then this element cannot be generated from the products [xi, y1], 2 � i � n. Indeed, since x3 /∈ L4, the
element cannot be generated from [x2, y1]. Due to the structure of L0 the elements xi (3 � i � n) are
in L2

0, i.e. they are generated by the linear combinations of the products of elements from L0. From
the equalities

[[xi, x j], y1
] = [

xi, [x j, y1]
] + [[xi, y1], x j

] =
[

xi,

m∑
t=2

α j,t yt

]
+

[
m∑

t=2

αi,t yt, xi

]

we derive that the element B ′
1 y2 + B ′

2 ym1+1 cannot be obtained by the products [xi, y1],3 � i � n.
However, it means that x3 ∈ L4. Thus, we have

L4 = {x3, x4, . . . , xn, y3, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym},

where (B1, B2) �= (0,0) and B1 B ′
2 − B2 B ′

1 �= 0.
The simple analysis of the terms L3 and L4 in the descending lower sequence implies

[x2, y1] = α′
2,2

(
B ′

1 y2 + B ′
2 ym1+1

) + α′
2,m1+1(B1 y2 + B2 ym1+1) +

m∑
j=3

j �=m1+1

α2, j y j, α′
2,2 �= 0.

Let h be a natural number such that x3 ∈ Lh+1 \ Lh+2, i.e.

Lh = {x3, x4, . . . , xn, yh−1, yh, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}, h � 3,

Lh+1 = {x3, x4, . . . , xn, yh, yh+1, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym},
Lh+2 = {x4, . . . , xn, yh, yh+1, . . . , ym1 , B1 y2 + B2 ym1+1, ym1+2, . . . , ym}.

If h = 3, then [B ′
1 y2 + B ′

2 ym1+1, y1] = β ′
2,3x3 + ∑

i�4(∗)x4, β ′
2,3 �= 0 and we consider the product

[[x2, y1], y1
] =

[
α′

2,2

(
B ′

1 y2 + B ′
2 ym1+1

) + α′
2,m1+1(B1 y2 + B2 ym1+1) +

m∑
j=3

j �=m1+1

α2, j y j, y1

]

= α′
2,2

[
B ′

1 y2 + B ′
2 ym1+1, y1

] + α′
2,m1+1[B1 y2 + B2 ym1+1, y1]

+
m∑

j=3
j �=m +1

α2, j[y j, y1] = α′
2,2β

′
2,3x3 +

∑
i�4

(∗)x4.
1
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On the other hand, due to (4) we have

[[x2, y1], y1
] = 1

2

[
x2, [y1, y1]

] = 1

2

[
x2,

n∑
i=2

β1,i xi

]
=

∑
i�4

(∗)xi .

Comparing the coefficients at the corresponding basic elements we get equality α′
2,2β

′
2,3 = 0, i.e.

we have a contradiction with the supposition h = 3.
If h � 4, then we obtain β ′

h−1,3 �= 0. Consider the chain of equalities

[yh−2, y2] = [
yh−2, [y1, x1]

] = [[yh−2, y1], x1
] − [[yh−2, x1], y1

]
=

[
n∑

i=3

βh−2,ixi, x1

]
− [yh−1, y1] = −βh−1,3x3 +

∑
i�4

(∗)xi .

Since yh−2 ∈ Lh−1 and y2 ∈ L3 then x3 ∈ Lh+2 = {x4, . . . , xn, yh−1, . . . , ym}, which is a contradiction
with the assumption that the nilindex of L is equal to n + m. �
Remark 3.1. In this subsection we used the product [y1, x1] = y2. However, it is not difficult to check
that the obtained results are also true under the condition [y1, x1] = 0.

3.3. The case of both generators lie in L1

Theorem 3.5. Let L = L0 ⊕ L1 be a Leibniz superalgebra from Leibn,m with characteristic sequence equal to
(n1, . . . ,nk | m1, . . . ,ms), where n1 � n − 2, m1 � m − 1, and both generators lying in L1 . Then L has nilindex
less than n + m.

Proof. Since both generators of the superalgebra L lie in L1, they are linear combinations of the ele-
ments {y1, ym1+1, . . . , ym1+···+ms−1+1}. Without loss of generality we may assume that y1 and ym1+1
are generators.

Let L2t = {xi, xi+1, . . . , xn, y j, . . . , ym} for some natural number t and let z ∈ L be an arbitrary ele-
ment such that z ∈ L2t \ L2t+1. Then z is obtained by the products of even number of generators. Hence
z ∈ L0 and L2t+1 = {xi+1, . . . , xn, y j, . . . , ym}. In a similar way, having L2t+1 = {xi+1, . . . , xn, y j, . . . , ym}
we obtain L2t+2 = {xi+1, . . . , xn, y j+1, . . . , ym}.

From the above arguments we conclude that n = m − 1 or n = m − 2 and

L3 = {x2, . . . , xn, y2, y3, . . . , ym1 , ym1+2, . . . , ym}.

Applying the above arguments we get that an element of the form B1 y2 + B2 ym1+2 + B3 ym1+m2+1
disappears in L4. Moreover, there exist two elements B ′

1 y2 + B ′
2 ym1+2 + B ′

3 ym1+m2+1 and B ′′
1 y2 +

B ′′
2 ym1+2 + B ′′

3 ym1+m2+1 which belong to L4, where

rank

( B1 B2 B3
B ′

1 B ′
2 B ′

3
B ′′

1 B ′′
2 B ′′

3

)
= 3.

Since x2 does not belong to L5 then the elements B ′
1 y2 + B ′

2 ym1+2 + B ′
3 ym1+m2+1, B ′′

1 y2 + B ′′
2 ym1+2 +

B ′′
3 ym1+m2+1 lie in L5. Hence, from the notations
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[x1, y1] = α1,2(B1 y2 + B2 ym1+2 + B3 ym1+m2+1) + α1,m1+2
(

B ′
1 y2 + B ′

2 ym1+2 + B ′
3 ym1+m2+1

)
+ α1,m1+m2+1

(
B ′′

1 y2 + B ′′
2 ym1+2 + B ′′

3 ym1+m2+1
) +

m∑
j=3, j /∈{m1+2,m1+m2+1}

α1, j y j,

[x1, ym1+1] = δ1,2(B1 y2 + B2 ym1+2 + B3 ym1+m2+1) + δ1,m1+2
(

B ′
1 y2 + B ′

2 ym1+2 + B ′
3 ym1+m2+1

)
+ δ1,m1+m2+1

(
B ′′

1 y2 + B ′′
2 ym1+2 + B ′′

3 ym1+m2+1
) +

m∑
j=3, j /∈{m1+2,m1+m2+1}

δ1, j y j,

we have (α1,2, δ1,2) �= (0,0).
Similarly, from the notations

[B1 y2 + B2 ym1+2 + B3 ym1+m2+1, y1] = β2,2x2 + β2,3x3 + · · · + β2,nxn,

[B1 y2 + B2 ym1+2 + B3 ym1+m2+1, ym1+1] = γ2,2x2 + γ2,3x3 + · · · + γ2,nxn,

we obtain the condition (β2,2, γ2,2) �= (0,0).
Consider the product

[
x1, [y1, y1]

] = 2
[[x1, y1], y1

] = 2α1,2[B1 y2 + B2 ym1+2 + B3 ym1+m2+1, y1]
+ 2α1,m1+2

[
B ′

1 y2 + B ′
2 ym1+2 + B ′

3 ym1+m2+1, y1
]

+ 2α1,m1+m2+1
[

B ′′
1 y2 + B ′′

2 ym1+2 + B ′′
3 ym1+m2+1, y1

]
+ 2

m∑
j=3, j /∈{m1+2,m1+m2+1}

α1, j[y j, y1] = 2α1,2β2,2x2 +
∑
i�3

(∗)xi .

On the other hand,

[
x1, [y1, y1]

] = [x1, β1,1x1 + β1,2x2 + · · · + β1,nxn] =
∑
i�3

(∗)xi .

Comparing the coefficients at the basic elements in these equations we obtain α1,2β2,2 = 0.
Analogously, considering the product [x1, [ym1+1, ym1+1]], we obtain δ1,2γ2,2 = 0.
From these equations and the conditions (β2,2, γ2,2) �= (0,0), (α1,2, δ1,2) �= (0,0) we easily obtain

that the solutions are α1,2γ2,2 �= 0, β2,2 = δ1,2 = 0 or β2,2δ1,2 �= 0, α1,2 = γ2,2 = 0.
Consider the following product

[[x1, y1], ym1+1
] = [

x1, [y1, ym1+1]
] − [[x1, ym1+1], y1

] = −δ1,2β2,2x2 +
∑
i�3

(∗)xi .

On the other hand,

[[x1, y1], ym1+1
] = α1,2γ2,2x2 +

∑
i�3

(∗)xi .

Comparing the coefficients of the basic elements in these equations we obtain the irregular equation
α1,2γ2,2 = −β2,2δ1,2. Hence, we obtain a contradiction with the assumption that the nilindex of the
superalgebra is equal to n + m. And the theorem is proved. �
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Thus, the results of Theorems 3.1–3.5 show that the Leibniz superalgebras with nilindex n + m
(m �= 0) are the superalgebras mentioned in Section 2. Hence, the classification of the Leibniz super-
algebras with nilindex n + m is completed.
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