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1. Introduction

The algebraic classification (up to isomorphism) of an n-dimensional algebras from a
certain variety defined by some family of polynomial identities is a classical problem in
the theory of non-associative algebras. There are many results related to algebraic classi-
fication of small dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and
many another algebras [1-16]. An algebra A is called a Zinbiel algebra if it satisfies the
identity

(xoy)oz=xo0(yoz+zoy).

Zinbiel algebras were introduced by Loday [17] and studied in [18-29]. Under the Koszul
duality, the operad of Zinbiel algebras is dual to the operad of Leibniz algebras. Hence,
the tensor product of a Leibniz algebra and a Zinbiel algebra can be given the structure of
a Lie algebra. Under the symmetrized product, a Zinbiel algebra becomes an associative
and commutative algebra. Zinbiel algebras are also related to Tortkara algebras [22] and
Tortkara triple systems [30]. More precisely, every Zinbiel algebra with the commutator
multiplication gives a Tortkara algebra (also about Tortkara algebras, see, [9,31,32]), which
have recently sprung up in unexpected areas of mathematics [33,34].
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Central extensions play an important role in quantum mechanics: one of the earlier
encounters is by means of Wigner’s theorem which states that a symmetry of a quan-
tum mechanical system determines an (anti-)unitary transformation of a Hilbert space.
Another area of physics where one encounters central extensions is the quantum theory of
conserved currents of a Lagrangian. These currents span an algebra which is closely related
to so-called affine Kac-Moody algebras, which are universal central extensions of loop alge-
bras. Central extensions are needed in physics, because the symmetry group of a quantized
system usually is a central extension of the classical symmetry group, and in the same way
the corresponding symmetry Lie algebra of the quantum system is, in general, a central
extension of the classical symmetry algebra. Kac-Moody algebras have been conjectured
to be symmetry groups of a unified superstring theory. The centrally extended Lie algebras
play a dominant role in quantum field theory, particularly in conformal field theory, string
theory and in M-theory. In the theory of Lie groups, Lie algebras and their representations,
a Lie algebra extension is an enlargement of a given Lie algebra g by another Lie algebra
h. Extensions arise in several ways. There is a trivial extension obtained by taking a direct
sum of two Lie algebras. Other types are a split extension and a central extension. Exten-
sions may arise naturally, for instance, when forming a Lie algebra from projective group
representations. A central extension and an extension by a derivation of a polynomial loop
algebra over a finite-dimensional simple Lie algebra gives a Lie algebra which is isomorphic
to a non-twisted affine Kac-Moody algebra [35, Chapter 19]. Using the centrally extended
loop algebra one may construct a current algebra in two spacetime dimensions. The Vira-
soro algebra is the universal central extension of the Witt algebra, the Heisenberg algebra
is the central extension of a commutative Lie algebra [35, Chapter 18].

The algebraic study of central extensions of Lie and non-Lie algebras has a very long
history [36-44]. For example, all central extensions of some filiform Leibniz algebras were
classified in [36,43] and all central extensions of filiform associative algebras were classified
in [40]. Skjelbred and Sund used central extensions of Lie algebras for a classification of low
dimensional nilpotent Lie algebras [42]. After that, the method introduced by Skjelbred
and Sund was used to describe all non-Lie central extensions of all 4-dimensional Mal-
cev algebras [39], all non-associative central extensions of 3-dimensional Jordan algebras
[38], all anticommutative central extensions of 3-dimensional anticommutative algebras
[45]. Note that the method of central extensions is an important tool in the classifica-
tion of nilpotent algebras. It was used to describe all 4-dimensional nilpotent associative
algebras [7], all 4-dimensional nilpotent assosymmetric algebras [46], all 4-dimensional
nilpotent bicommutative algebras [47], all 4-dimensional nilpotent Novikov algebras [48],
all 4-dimensional commutative algebras [49], all 5-dimensional nilpotent Jordan algebras
[10], all 5-dimensional nilpotent restricted Lie algebras [6], all 5-dimensional anticom-
mutative algebras [49], all 6-dimensional nilpotent Lie algebras [5,8], all 6-dimensional
nilpotent Malcev algebras [11], all 6-dimensional nilpotent binary Lie algebras[1], all
6-dimensional nilpotent anticommutative €9 -algebras [1], all 6-dimensional nilpotent
Tortkara algebras[9,32], and some others.

2. Preliminaries

All algebras and vector spaces in this paper are over C.
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2.1. Filiform Zinbiel algebras
An algebra A is called Zinbiel algebra if for any x, y, z € A it satisfies the identity
(xoy)oz=xo0(yoz)+x0(z0y).

For an algebra A, we consider the series

i
Al=A, At = ZAkAi—H—k’ i> 1.
k=1

We say that an algebra A is nilpotent if A’ =0 for some i € N. The smallest integer
satisfying A’ = 0 is called the nilpotency index of A.

Definition 2.1: An n-dimensional algebra A is called null-filiform if dim Al=n+1) —
Ll<i<n+1

It is easy to see that a Zinbiel algebra has a maximal nilpotency index if and only if it is
null-filiform. For a nilpotent Zinbiel algebra, the condition of null-filiformity is equivalent
to the condition that the algebra is one-generated.

All null-filiform Zinbiel algebras were described in [50]. Throughout the paper, CJl:
denotes the combinatorial numbers (Jl)

Theorem 2.2 ([50]): An arbitrary n-dimensional null-filiform Zinbiel algebra is isomorphic
to the algebra F :

€ oe = C]i+j_1e,-+j, 2<i+j=<n,
where omitted products are equal to zero and {e1, e, . . ., e,} is a basis of the algebra.
As an easy corollary from the previous theorem we have the next result.

Theorem 2.3: Every non-split central extension of F is isomorphic to FO i1

Proof: It is easy to see, that every non-split central extension of F is a one-generated
nilpotent algebra. It follows that every non-split central extension of a null-filiform Zinbiel
algebra is a null-filiform Zinbiel algebra. Using the classification of null-filiform algebras
(Theorem 2.2) we have the statement of the Theorem. [ |

Definition 2.4: An n-dimensional algebra is called filiform if dim(Ah=n—i2<i<n.
All filiform Zinbiel algebras were classified in [50].

Theorem 2.5: An arbitary n-dimensional (n > 5) filiform Zinbiel algebra is isomorphic to
one of the following pairwise non-isomorphic algebras:

1 ] .
Fn:eioej=Ci+j_1ei+j, 2<i+j<n-—1

) j . .
Fn:eioe]'=C]i+j_1ei+j, 2<i+j<n—1, e,oe =ey_1;

F3:eioej=C]i+j_1e,~+j, 2<i+j<n—1, ey,oe,; =¢ey_1.
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2.2. Basic definitions and methods

Throughout this paper, we are using the notations and methods well written in [38,39] and
adapted for the Zinbiel case with some modifications. From now, we will give only some
important definitions.

Let (A, o) be a Zinbiel algebra and V a vector space. Then the C-linear space Z>(A, V)
is defined as the set of all bilinear maps 6: A x A —> V, such that

O(xoy,z) =0(x,yoz+zoy).

Its elements will be called cocycles. For a linear map f from A to V, if we write §f: A X
A — Vbydf(x,y) = f(xoy),thendf Z%(A,V). We define B%(A, V) = {0 = 8f :f e
Hom(A, V)}. One can easily check that B2(A,V) is a linear subspace of Z?(A, V) whose
elements are called coboundaries. We define the second cohomology space H?(A,V) as the
quotient space Z2(A, V) / B%(A, V).

Let Aut(A) be the automorphism group of the Zinbiel algebra A and let ¢ € Aut(A).
For 6 € Z*(A,V) define ¢ (x, y) = (¢ (x), ¢ (¥)). Then ¢ € Z*(A, V). So, Aut(A) acts
on Z>(A, V). It is easy to verify that B2(A, V) is invariant under the action of Aut(A) and
so we have that Aut(A) acts on H*(A, V).

Let A be a Zinbiel algebra of dimension m < n,and V be a C-vector space of dimension
n—m. For any € Z2(A,V) define on the linear space Ay := A @ V the bilinear product
= —la, bylx+x,y+y]a, =x0y+0(x,y)forallx,y € A,x’,y’ € V. Thealgebra Ay
is a Zinbiel algebra which is called an (n — m)-dimensional central extension of A by V.
Indeed, we have, in a straightforward way, that Ay is a Zinbiel algebra if and only if 6 €
Z*(A, V).

We also call the set Ann(0) = {x € A : 6(x,A) + 0(A, x) = 0} the annihilator of 6. We
recall that the annihilator of an algebra A is defined as the ideal Ann(A) ={x € A:xo0
A + A o x = 0} and observe that Ann(Ag) = (Ann(d) N Ann(A)) @ V.

We have the next key result:

Lemma 2.6: Let A be an n-dimensional Zinbiel algebra such that dim(Ann(A)) = m #
0. Then there exists, up to isomorphism, a unique (n — m)-dimensional Zinbiel algebra A’
and a bilinear map 6 € Z*(A, V) with Ann(A) N Ann(0) = 0, where V is a vector space of
dimension m, such that A = A’y and A/Ann(A) = A'.

However, in order to solve the isomorphism problem we need to study the action of
Aut(A) on H?(A, V). To do that, let us fix ey, . . ., s a basis of V, and 6 € Z*(A, V). Then
0 can be uniquely written as 6(x,y) = Zle 0i(x, y)ei, where 6; € Z*(A, C). Moreover,
Ann(9) = Ann(6;) N Ann(8,) N ... N Ann(6;). Further, 6 € B*(A,V) if and only if all
0; € B2(A, C).

Definition 2.7: Let A be an algebra and I be a subspace of Ann(A). If A = Ay @ I then I
is called an annihilator component of A.

Definition 2.8: A central extension of an algebra A without annihilator component is
called a non-split central extension.
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It is not difficult to prove (see [39, Lemma 13]), that given a Zinbiel algebra Ay, if
we write as above 0(x,y) = Y ;_, 0i(x, y)e; € Z*(A,V) and we have Ann(6) N Ann(A) =
0, then Ag has an annihilator component if and only if [61], [62],.. ., [6s] are linearly
dependent in H2(A, C).

Let V be a finite-dimensional vector space. The Grassmannian Gr(V) is the set
of all k-dimensional linear subspaces of V. Let Gs(H?(A,C)) be the Grassman-
nian of subspaces of dimension s in H2(A,C). There is a natural action of Aut(A)
on Gs(H%(A, C)). Let ¢ € Aut(A). For W = ([01],[62],...,[6s]) € Gs(H*(A, C)) define
dW = ([¢01],[¢62], ..., [#65]). Then pW € Gs(H?(A, C)). We denote the orbit of W €
Gs(H?(A, C)) under the action of Aut(A) by Orb(W). Since given

Wy = ([61],[62],...,[6:]), Wa=([%],[92],....[%]) € G (H* (A, 0)),

we easily have that in case W; = W), then ();_; Ann(6;) N Ann(A) = (;_, Ann(?;) N
Ann(A), and so we can introduce the set

To(A) = {W = ([6:],[62) ... [6:)) € G; (H2 (A, ©)) : (| Ann(6) N Ann(A) = 0} ,

i=1

which is stable under the action of Aut(A).
Now, let V be an s-dimensional linear space and let us denote by E(A, V) the set of all
non-split s-dimensional central extensions of A by V. We can write

E(A,V) = {Ag 10 (6y) =D _6i(xy)eiand ([61],[02],...,[0:]) € TS(A)}.

i=1

We also have the next result, which can be proved as in [39, Lemma 17].

Lemma 2.9: Let Ap, Ay € E(A, V). Suppose that 0 (x,y) = Y ;_, 0i(x, y)ei and ¥ (x,y) =
Y i1 ¥i(x, )ei. Then the Zinbiel algebras Ag and Ay are isomorphic if and only if

Orb ([61],[62],..., [6s]) = Orb ([th], [D2], ..., [¥s]) .

From here, there exists a one-to-one correspondence between the set of Aut(A)-orbits
on T5(A) and the set of isomorphism classes of E(A, V). Consequently we have a procedure
that allows us, given the Zinbiel algebra A" of dimension n—s, to construct all non-split
central extensions of A’. This procedure would be:

2.3. Procedure

(1) For a given Zinbiel algebra A’ of dimension n — s, determine H2(A’, C), Ann(A’) and
Aut(A').

(2) Determine the set of Aut(A’)-orbits on Ts(A').

(3) For each orbit, construct the Zinbiel algebra corresponding to a representative of it.

Finally, let us introduce some of notation. Let A be a Zinbiel algebra with a basis
e, ez, ...,e,. Then by Ajj we will denote the bilinear form Ajj: AXA — C with
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Ajj(er, em) = 8i8jm. Then the set {A;j: 1 <i,j <n} is a basis for the linear space of
the bilinear forms on A. Then every 6 € Z*(A,C) can be uniquely written as =
lei,jgn cijAjj, where ¢;; € C.

3. Central extension of filiform Zinbiel algebras

Proposition 3.1: Let F},F2 and F> be n-dimensional filiform Zinbiel algebras defined in
Theorem 2.5. Then:

o A basis of Z*(Fk, C) is formed by the following cocycles

s—1

Z*(FL,C) = <A1,1, A Aty Dppy Y CT A 53 <5< n>,

i=1

i=1

s—1
ZZ(FE, O = <A1,1, Aip, Apis An,nsz C;.:{Ai,s—i; 3<s<n-— 1>, k=2,3.
o A basis of BX(Fk, C) is formed by the following coboundaries

s—1
BZ(F;}I) C) = <A1,laZC§:}ALS—i>3 <s<n-— 1>)

i=1
s—1 n—2
B*(F%,C) = <A1,1, Z ClAis—in3<s<n-—2, Z ChAip—1-i+ An,1>,

i=1 i=1

s—1 n—2
BX(F,,C) = <A1,1, Y CliAp3<s<n—2> CrhAi i+ An,n>.
i=1 i=1

o A basis of H2(FK, C) is formed by the following cocycles

n—1
HZ(F:N C) - <[A1,l’l]) [An,l]’ [An,n]y [Z C;__llAi,n—i}>:

i=1
H2(FK,C) = ([A1a), [An ) [Annl),  k=2,3.

Proof: The proof follows directly from the definition of a cocycle. |

Proposition 3.2: Let ¢}’ € Aut(Fﬁ). Then

ap1 0 0 0 0
azl ail 0 e 0 0
, as, * ail - 0 0
¢1 = . >
n—1
an—1,1 * * aj, An—1.1n

an1 0 0 ... 0 Ann
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all 0 0 . 0 0
ay; al, 0 ... 0 0
’ 3
a ¥ a 0 0
o = 3,1 1,1
2 : : : >
n—1
an—1,1 * * al,l An—1,n
a0 0 0 al?
all 0 0 0 0
ay; al, 0 0 0
as, * a?l 0 0
¢3 = ’
3 -_ . . :
n—1
an—1,1 * * al,l an—1,n
n—1)/2
a0 0 o amv

3.1. Central extensions of F)

Let us denote
n—1
i—1
Vi = [Al,n]: Vy = [An,l]; V3 = [An,n]) Vi = chn_lAj,n—j
j:l

andx = ay,1,y = ann>Z = An—1,0> W = an,1. Since

* . * C?l_lozfl o
Cl_ o} 0 0
Ch 3o 0 0 0
o 0 0 o
0 0 0 0 C oy o
0 0 0 Ch_ o4 0 0
0 0 0 0 0
Cn7171a4
= @¢n" ! 1>
o - 0
0 C'ay 0 : : :
C' 3y 0 0 0 0 0
(6%) 0 0 v 0 0 o3

forany 0 = o1 V1 4+ a2 V2 4+ a3V3 + a4 V4, we have the action of the automorphism group
on the subspace (6) as

<(a1xy + azyw + agx2) V1 + (aaxy + asyw + (n — Dauxz)Vy + a3y° Vs + a4x”V4>-
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3.1.1. 1-dimensional central extensions of F)
Let us consider the following cases:

(1) if a3 # 0,02 = @3 = g = 0, then by choosing x = 1,y = 1/«;, we have the repre-
sentative (V7).

(2) if oz # 0,3 = g = 0, then by choosing x = 1,y = 1/az, @ = o1 /2, we have the
family of representatives (¢ V] + V3).

(3) if oy = ap, 3 # 0,04 = 0, then by choosing y = 1/, /a3, w = —az /a3, x = 1, we
have the representative (V3).

RVALE] _ 1 _ %)

(4) if a1 # oz, a3 # 0,4 = 0, then by choosing x = ) = «/_OTa’W = Jow—a)’

we have the representative (V] + V3).

(5) if (n — Doy = az, a3 = 0,4 # 0, then by choosing x = 1/ Yoy, y = 1,z = —a1 /o,
we have the representative (Vy).

(6) if (n— a1 # az, a3 = 0,04 # 0, then by choosing x = 1/Yay,y = Yets

ay—(n—1ay’
n
Z= = Dar Vnofl)al, we have the representative (V, + Vy).

(7) if o3 #0,a4 #0, then by choosing x=1/Yas,y=1//a3z =G azl)jim
— w—(n—Daoy

W= ) Yaas

, we have the representative (V3 + Vy).
It is easy to verify that all previous orbits are different, and so we obtain

TI(F:,) = Orb(V1) U Orb(aV] + V;,) U Orb(V3) U Orb(V] + V3)
U Orb(V4) U Orb(V; + V4) U Orb(Vs + Vy).

3.1.2. 2-dimensional central extensions of F}
We may assume that a 2-dimensional subspace is generated by

01 =a1Vy + a2 Vo +a3V3 + agVy,
0, = B1V1 + B2Va + B3Vs.

Then we have the six following cases:

(1) ifaq # 0, B3 # 0, then we can suppose that o3 = 0. Now
(a) for (n— )ay # a2, B1 # Pa, by choosing x = (L2=U=DaF=PV)1/(n=2)

Ba ﬁlx z= “l(fiﬂfz}x, w = —p1x/B3, we have the representative (V, +
Vs, Vi + Vy).

(b) for (n— 1)y # a2, B1 = Ba, by choosing x = (=24 ai" ﬁ?“l)l/(” D,y =1/JB,
z= _a;f}ﬂ?’ w = —fB1x/ B3, we have the representative (V3, V, + V).

(c) for (n—1ay =az,p1# P2, by choosing x=1/Yay, y= ’31
z=aBib) —B1x/ B3, we have the representative (V, + V3, V4).

asf3
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3)

(4)

(5)

(6)
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(d) for (n—1Dog =0az,p1 =B by choosing x=1/os, y=1/J/Bs,
z= — a1y/a4, w = —P1x/ B3, we have the representative (V3, Vy).
ifag # 0,83 =0, B2 # 0, then we can suppose that a; = 0. Now

(@) for a3#0, by choosing x:l/\"/oz_,yzl/«/a_,z:(n_zs‘m,

w= —(n(_';—i,)g}m, and o = B/, we have the family of representatives («V; +
V2, V3 + Vy).

(b) for a3=0,(n—1)B;1 # B2, then by choosing x=1/Yagy=1,

z= —Wm and o = B1/B, we have the family of representatives
(V) + V3, V4>a7,gn711-

(c) for @z =0,(n—1)B; = B2 and o1 = 0, by choosing x = 1/ Yos,y =1,z =0,

we have the representative <ﬁv1 + V3, V4).

(d) foras =0,(n—1)B; = B, and a; # 0, by choosing x = 1/ /o,y = — (n‘i/gxl,
z= %, we have the representative (n—ilvl + V,, Vo + Vy).

ifag £ 0,83 = B, =0, B1 # 0, then
(@) for a3#0, by choosing x=1/Yosy=1/Jo3,2z= %,
W= 052—(11—1)051
(n—2) Magos
(b) for a3 =0, after a linear combination of 6; and 6, we can suppose that

(n — Doy = ay, by choosing x = 1//ay, y = 1,z = —o1 /a4, we have the rep-
resentative (Vy, Vg4).

ifag = 0,3 # 0, B2 # 0, then

(a) for B # B,, after alinear combination of 6; and 8, we can suppose that o) = o,
by choosing y = 1/, /a3, w = —az/a3,x = 1 and a = B/, we have the family
of representatives («V; + V3, V3)q21.

(b) for B; = By, 1 = wy, after a linear combination of 6; and 6, we have the repre-
sentative (V] 4+ Vj, V3).

(c) for B1 = Ba, a1 # ay, by choosing x = a:/_OT;Z,y =1/ oz, w= W, we
have the representative (V; + V3, V; + V3).

ifag = 0,03 £ 0, 8, = 0, B1 # 0, then after a linear combination of 8; and 6, we can

suppose that a1 = oy, by choosing y = 1/,/az,w = —az /a3, x =1 and o« = B1 /B>

we have the representative (Vy, V3).

ifas = a4 = 0, B3 = 0, then we have the representative (Vi, V).

, we have the representative (Vi, Vi + Vy).

It is easy to verify that all previous orbits are different, and so we obtain

Tz(F:l) = Orb(Vl, VZ> U Orb(Vl, V3> U Orb(Vl, V3 + V4> U Orb(Vl, V4)

UOrb<
n—1

Vi+ Vy, Vo + V4> U Orb(V; + V3, Vi 4+ V3)

U Orb{a V] 4+ V3, V3) U Orb{a V] + V,, V3 + V4)
U Orb{aV; 4+ V3, V4) U Orb(V;, + V3, V, 4+ Vy)
U Orb(V, + V3, V4) U Orb{Vs, V, + V4) U Orb(V3, V4).
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3.1.3. 3-dimensional central extensions of F)
We may assume that a 3-dimensional subspace is generated by

01 = a1V + a2V + a3V3 + a4 Vy,
02 = B1V1 + B2V2 + B3Vs,
03 = iVi+ .Vl

Then we have the following cases:

(1) ifasq # 0,83 # 0, y2 # 0, then we can suppose that o, = 0,23 = 0, 8, = 0 and
(a) for y1 # y2, (n—1)y1 # y», then by choosing x =1/ Yo, y =1//B3, 2=
a4((noi117;2yy1—y2)’ w= a4’(3}ilyf;z), we have the family of representatives (aV; +
V2, V3, Vadgpr, 1)
(b) for y; = y», then
(i) for B1 # 0, by choosing x = 1/ /oy, y = %, z= %, w = 0, we have
the representative (Vi + V,, V| + V3, Vy).
(ii) for i =0, by choosing x =1/ Yos, y =1/y/B3, z = (Hf%, w =0, we
have the representative (V; + V3, V3, Vy).
(¢) for (n— 1)y = y,, then
(i) for oy # 0, by choosing y = 1//B3, z= —%f’, x="VYmn-1z, w=

_ ((f:; 12)5313", we have the representative (ﬁVI + V3, V3, Vy + Vy).

(ii) foro; = 0, by choosingx =1/ oy, y =1//B3,z2=0,w= —((”n__lz))ﬁé;,we
have the representative (ﬁVI + V3, V3, V4).

(2) ifag # 0,83 # 0,72 =0,y1 # 0, then we can suppose that o3 = 0 and after a linear
combination of 6;,6,,63 we can suppose that (n — 1)a; = a2, f1 = B2. By choos-
ingx = 1/%ag,y = 1/4/Bs,z = —a1y/os, w = —B1x/ B3, we have the representative
(Vl’ V3’ V4>

(3) if g #0,83=0,8, %0,y =0,y; # 0, then and after a linear combination of
01, 6,,03 we can suppose that o; = ay = 81 = 0. Now
(a) for asz # 0, by choosing y = 1/,/a3,x = 1/./as we have the representative

(V1, V2, V3 + Vy).
(b) for a3 = 0, we have the representative (V1, V,, V4).
(4) ifas = 0,83 =0,y, = 0, then we have the representative (Vi, V,, V3).

It is easy to verify that all previous orbits are different, and so we obtain

T3(F}) = Orb(Vy, Va, V3) U Orb(Vy, Vy, V3 + V4) U Orb(Vy, Vy, V)

U Orb(V; 4+ V,, V1 + V3, V4 U Orb< 1
n p—

Vi 4V, V3, Vs + V4>
@] Orb(oeVl + Vz, V3, V4> U Orb(Vl, V3, V4>
3.1.4. 4-dimensional central extensions of F)

There is only one 4-dimensional non-split central extension of the algebra F1. It is defined
by (V1, V2, V3, V4).
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3.1.5. Non-split central extensions of F)
So we have the next theorem

Theorem 3.3: An arbitrary non-split central extension of the algebra F}. is isomorphic to one
of the following pairwise non-isomorphic algebras
o one-dimensional central extensions:

n+1 n+1 n+1 n+1 1 2 3
my s My (@), 3, iy s Faygs By Fogg

o two-dimensional central extensions:
n—+2 n—+2 n—+2 n—+2 n—+2 n—+2 n—+2 n—+2 n+2
M ' 55 Mg s Mg s ] g s Mg s g (@), iy C(e), py T (a),
n+2 n+2 n+2 n+2
Hip > Ky > Kz > K3
o three-dimensional central extensions:

n+3 n+3 n+3 n+3 n+3 n+3 n+3
Mig > M5 s M5 > Mg s Hig > Mg (@) g

o four-dimensional central extensions:

n+4
Mg

witha € C.

3.2. Central extensions of F2
Let us denote

Vi=T[A1xl, Va=[Ani], V3 =[Anl
andx = ay,;, w = ap,. Let 6 = a1 V] + @2 V2 + 3 V3. Then by

* 0 0 o 0 0 0 o
0 0O 0 O o ... 0 0 O
: =@ e
O ... 00 O O ... 00 O
o ... 0 0 of a ... 0 0 a3

we have the action of the automorphism group on the subspace (9) as

(x”_z(xozl + wa3) V1 + X" 2 (xay + waz) Vs + xZ"_4a3V3>.

3.2.1. 1-dimensional central extensions of F2
Let us consider the following cases:

(1) ifaz = 0, then
(a) for oy = 0,01 # 0, we have the representative (V).
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(b) for ay # 0, by choosing x = az_l/("_l) and o = o) /o, we have the family of

representatives (Vi 4+ Va).
(2) ifas # 0, then
(a) fora; # ay, by choosing x = (%)1/(”_3), w=—
tive (V, 4+ V3).
(b) for oy = a3, by choosing w = —’%1 we have the representative (V3).

X1

=1 we have the representa-
a3

It is easy to verify that all previous orbits are different, and so we obtain

T1(F?) = Orb(V;) U Orb{aV; + V) U Orb(V; 4 V3) U Orb(Vs).

3.2.2. 2-dimensional central extensions of F2
We may assume that a 2-dimensional subspace is generated by

0 =o1Vi +aVy 4+ a3Vs,
0, = B1Vi+ B2 Va.

We consider the following cases:

(1) if a3 # 0 and B; # B,, then after a linear combination of 6; and 6, we can suppose
that @; = a». Now,
(a) for B, # 0, by choosing x = ,32_1/("_1), w= —% and o = /B, we have the
family of respresentatives (Vi + V2, V3)g1.

(b) for B, =0, by choosing x = ;" V=) o — —%, we have the respresentative
(V1, V3).
(2) ifas # 0and B; = By, then
(a) fora; # oy, by choosing x = (%)1/(”_1), w= —’%2 we have the representa-

tive (V1 + V,, Vi + V3).
(b) for a; = «y, after a linear combination of 6; and 6, we have the representative
(Vi + V3, V3).
(3) if s = 0, then we have the representative (Vy, V).

It is easy to verify that all previous orbits are different, and so we obtain
Tz(Fﬁ) = Orb(Vy, V1) U Orb(Vy, V3) U Orb(V;y + V,, Vi + V3) U Orb(aVy + V3, V3).
3.2.3. 3-dimensional central extensions of F2
There is only one 3-dimensional non-split central extension of the algebra F2. It is defined

by (V1, V2, V3).

3.2.4. Non-split central extensions of F?
So we have the next result.

Theorem 3.4: An arbitrary non-split central extension of the algebra F2 is isomorphic to one
of the following pairwise non-isomorphic algebras
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o one-dimensional central extensions:
1
n+1 n+1 . n+1 n+1 n+1
mis () witha # ———, g™ iy s Mg

o two-dimensional central extensions:

. 1
P2t R 2 ) with o £ — i
o three-dimensional central extensions:
wis?
witha € C.
3.3. Central extensions of F3
Let us denote
Vi=[Anul, Va=[Anl, Vi=[An]
andx = a1, w = ap,. Let0 = a1 V] + @2 V2 + @3 V3. Then by
s 0 0 o 0 0 0 o
0 0 0 O o ... 0 0 O
: =@t s e
0 0O 0 O 0 0 0 O
o 0 0 of o 0 0 a3

we have the action of the automorphism group on the subspace (9) as

<x(”_1)/2(x0t1 + wa3) V1 + x"V2 (xay + waz) Vs + x”_1a3V3>.

3.3.1. 1-dimensional central extensions of F3
Let us consider the following cases:

(1) ifaz = 0, then
—2/(n+1)

(a) foray = 0,07 # 0, by choosing x = o
—2/(n+1)
2

, we have the representative (V).
(b) for ay # 0, by choosing x = «
representatives (@« Vi + Va).
(2) ifas # 0, then

and o = o1/« we have the family of

(a) foray # a1, by choosing x = (%)2/(”’3), w= —% we have the representa-
tive (V, 4+ V3).
(b) for oy = a1, by choosing w = —% we have the representative (V3).

It is easy to verify that all previous orbits are different, and so we obtain

T1(F3) = Orb(V;) U Orb(aV; + V) U Orb(V; 4 V3) U Orb(V3).
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3.3.2. 2-dimensional central extensions of F3
We may assume that a 2-dimensional subspace is generated by

01 =a1V1 +a2Va + a3Vs,
0, = B1Vi + B2 Va.

We consider the following cases:

(1) if ez # 0 and B; # B,, then after a linear combination of 6; and 6, we can suppose
that @; = ap. Now,
a) for B, , by choosing x = 8, ,w= —"1 and o = B1/B, we have the
() for 2 # 0, by choosing x = f, "™, w = 1 and a = f1/B, we have th
family of respresentatives (V1 + V3, V3)g1.
(b) for B, =0, by choosing x = 8, 2/t ), —%, we have the respresentative
(V1, V3).
(2) ifas # 0and B; = B,, then
(a) for o # &y, by choosing x = (%)2/(”_3), w=—
tive (V1 4+ V,, V] + V3).
(b) for a1 = «p, after a linear combination of ; and 6, we have the representative
(V1 + V3, V3).
(3) ifaz = 0, then we have the representative (Vy, V3).

X0

=22 we have the representa-
as

It is easy to verify that all previous orbits are different, and so we obtain

T,(F3) = Orb(V}, V) U Orb(Vy, V3) U Orb(V; + Vs, Vi + V3) U Orb(a V] + Vs, V3.)

3.3.3. 3-dimensional central extensions of F3
There is only one 3-dimensional non-split central extension of the algebra F3. It is defined
bY (Vla VZa V3>

3.3.4. Non-split central extensions of F3
So we have the next theorem.

Theorem 3.5: An arbitrary non-split central extension of the algebra F> is isomorphic to one
of the following pairwise non-isomorphic algebras

o one-dimensional central extensions:

n+1 n+1 n+1 n+1
M7 s My (o), M1y > M3

o two-dimensional central extensions:

n+2 n+2 n+2 n+2
Mis > Mg > Mg 5 Hyg ()

o three-dimensional central extensions:

n+3
Mg

witha € C.
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Appendix. The list of the algebras

M;‘:eioej=C{+j_1, 2<i4+j<n—2, ejoe,=ey1,

;Lg(oz):e,-oej:C]l:Hfl, 2<i+j<n—2, eoe;=ae1, e,0€ =ey_1,
/,Lg’:eioej=C]l:+j_1, 2<i+j<n—2, e,o0e,=en_1,

uZ:eioej:C{H_l, 2<i4+j<n—2, eoe,=ey_1, €n0e€y=en_1,
ug:eioej:C]l:_‘_j_l, 2<i+j<n—3, eloe,=¢ey_1, ey0€ = ey,
ug’:eioej:C{H_l, 2<i4+j<n—3, ejoe,=ey_1, €noey=en_2,
M?:eioej:C]iAJrjfl, 2<i+j<n—2, eoe,=¢ey1, eyoey=ey 2,

n J . . 1

MS:eioej:Ciﬂ;I, 2<i4+j<n-2, eloen:n_3en_1, e,oe; =ey_+en_i,
/,Lg’:eioej=C]l:+j_1, 2<i+j<n—3, ejoe,=es2+en_1, e,0e =ey_1,

epoe, = ey o

n i P
;Llo(a):eioej:Ci+j_1, 2<i4+j<n-—3, eoe,=ae,—1, e,0e =eu_1,

€n O €n = €n—2,

" j .
pn(@) :eoe=Cy; y, 2<it+j<n—2 eoce,=ae,1, e 0el=en1,

n .
My -

n .,
Hy3 -

n
Mg

n.
His -

n
Hie

€n O €y = €n—2,

eioej:Ciijl’ 2§l+]§n_2> enoel =ey—2+ en—1, €n O €n = €n—1,
J c
eioej=Ci+j_1, 2<i+j<n—2, e,o0e =ey_2 e€,0€;=cey_1,
J C
:eioej:CH_j_l, 2<i+j<n—4, eoe;,=ey_2 e€;0€ =e€_1, €,0€; =€y_3,
¢ioe=Cj, 2<i+j<n—3, eoen=er2 e 0el =1, €y 0en=en3
j L 1
:eioej:CH,j,l; 2<i+j<n—3, eoe = _451171’ enoel =ep—3+en—1,

€n O €y = €n—2.
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