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ABSTRACT
In this paper we describe central extensions (up to isomorphism) of
all complex null-filiform and filiformZinbiel algebras. It is proven that
every non-split central extension of an n-dimensional null-filiform
Zinbiel algebra is isomorphic to an (n + 1)-dimensional null-filiform
Zinbiel algebra. Moreover, we obtain all pairwise non isomorphic
quasi-filiform Zinbiel algebras.
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1. Introduction

The algebraic classification (up to isomorphism) of an n-dimensional algebras from a
certain variety defined by some family of polynomial identities is a classical problem in
the theory of non-associative algebras. There are many results related to algebraic classi-
fication of small dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and
many another algebras [1–16]. An algebra A is called a Zinbiel algebra if it satisfies the
identity

(x ◦ y) ◦ z = x ◦ (y ◦ z + z ◦ y).

Zinbiel algebras were introduced by Loday [17] and studied in [18–29]. Under the Koszul
duality, the operad of Zinbiel algebras is dual to the operad of Leibniz algebras. Hence,
the tensor product of a Leibniz algebra and a Zinbiel algebra can be given the structure of
a Lie algebra. Under the symmetrized product, a Zinbiel algebra becomes an associative
and commutative algebra. Zinbiel algebras are also related to Tortkara algebras [22] and
Tortkara triple systems [30]. More precisely, every Zinbiel algebra with the commutator
multiplication gives a Tortkara algebra (also about Tortkara algebras, see, [9,31,32]), which
have recently sprung up in unexpected areas of mathematics [33,34].
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Central extensions play an important role in quantum mechanics: one of the earlier
encounters is by means of Wigner’s theorem which states that a symmetry of a quan-
tum mechanical system determines an (anti-)unitary transformation of a Hilbert space.
Another area of physics where one encounters central extensions is the quantum theory of
conserved currents of a Lagrangian. These currents span an algebra which is closely related
to so-called affineKac-Moody algebras, which are universal central extensions of loop alge-
bras. Central extensions are needed in physics, because the symmetry group of a quantized
system usually is a central extension of the classical symmetry group, and in the same way
the corresponding symmetry Lie algebra of the quantum system is, in general, a central
extension of the classical symmetry algebra. Kac-Moody algebras have been conjectured
to be symmetry groups of a unified superstring theory. The centrally extended Lie algebras
play a dominant role in quantum field theory, particularly in conformal field theory, string
theory and inM-theory. In the theory of Lie groups, Lie algebras and their representations,
a Lie algebra extension is an enlargement of a given Lie algebra g by another Lie algebra
h. Extensions arise in several ways. There is a trivial extension obtained by taking a direct
sum of two Lie algebras. Other types are a split extension and a central extension. Exten-
sions may arise naturally, for instance, when forming a Lie algebra from projective group
representations. A central extension and an extension by a derivation of a polynomial loop
algebra over a finite-dimensional simple Lie algebra gives a Lie algebra which is isomorphic
to a non-twisted affine Kac-Moody algebra [35, Chapter 19]. Using the centrally extended
loop algebra one may construct a current algebra in two spacetime dimensions. The Vira-
soro algebra is the universal central extension of the Witt algebra, the Heisenberg algebra
is the central extension of a commutative Lie algebra [35, Chapter 18].

The algebraic study of central extensions of Lie and non-Lie algebras has a very long
history [36–44]. For example, all central extensions of some filiform Leibniz algebras were
classified in [36,43] and all central extensions of filiform associative algebras were classified
in [40]. Skjelbred and Sund used central extensions of Lie algebras for a classification of low
dimensional nilpotent Lie algebras [42]. After that, the method introduced by Skjelbred
and Sund was used to describe all non-Lie central extensions of all 4-dimensional Mal-
cev algebras [39], all non-associative central extensions of 3-dimensional Jordan algebras
[38], all anticommutative central extensions of 3-dimensional anticommutative algebras
[45]. Note that the method of central extensions is an important tool in the classifica-
tion of nilpotent algebras. It was used to describe all 4-dimensional nilpotent associative
algebras [7], all 4-dimensional nilpotent assosymmetric algebras [46], all 4-dimensional
nilpotent bicommutative algebras [47], all 4-dimensional nilpotent Novikov algebras [48],
all 4-dimensional commutative algebras [49], all 5-dimensional nilpotent Jordan algebras
[10], all 5-dimensional nilpotent restricted Lie algebras [6], all 5-dimensional anticom-
mutative algebras [49], all 6-dimensional nilpotent Lie algebras [5,8], all 6-dimensional
nilpotent Malcev algebras [11], all 6-dimensional nilpotent binary Lie algebras[1], all
6-dimensional nilpotent anticommutative CD-algebras [1], all 6-dimensional nilpotent
Tortkara algebras[9,32], and some others.

2. Preliminaries

All algebras and vector spaces in this paper are over C.
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2.1. Filiform Zinbiel algebras

An algebra A is called Zinbiel algebra if for any x, y, z ∈ A it satisfies the identity

(x ◦ y) ◦ z = x ◦ (y ◦ z) + x ◦ (z ◦ y).

For an algebra A, we consider the series

A1 = A, Ai+1 =
i∑

k=1

AkAi+1−k, i ≥ 1.

We say that an algebra A is nilpotent if Ai = 0 for some i ∈ N. The smallest integer
satisfying Ai = 0 is called the nilpotency index of A.

Definition 2.1: An n-dimensional algebra A is called null-filiform if dimAi = (n + 1) −
i, 1 ≤ i ≤ n + 1.

It is easy to see that a Zinbiel algebra has a maximal nilpotency index if and only if it is
null-filiform. For a nilpotent Zinbiel algebra, the condition of null-filiformity is equivalent
to the condition that the algebra is one-generated.

All null-filiform Zinbiel algebras were described in [50]. Throughout the paper, Cj
i

denotes the combinatorial numbers
(i
j
)
.

Theorem 2.2 ([50]): An arbitrary n-dimensional null-filiform Zinbiel algebra is isomorphic
to the algebra F0n :

ei ◦ ej = Cj
i+j−1ei+j, 2 ≤ i + j ≤ n,

where omitted products are equal to zero and {e1, e2, . . . , en} is a basis of the algebra.
As an easy corollary from the previous theorem we have the next result.

Theorem 2.3: Every non-split central extension of F0n is isomorphic to F0n+1.

Proof: It is easy to see, that every non-split central extension of F0n is a one-generated
nilpotent algebra. It follows that every non-split central extension of a null-filiform Zinbiel
algebra is a null-filiform Zinbiel algebra. Using the classification of null-filiform algebras
(Theorem 2.2) we have the statement of the Theorem. �

Definition 2.4: An n-dimensional algebra is called filiform if dim(Ai) = n − i, 2 ≤ i ≤ n.

All filiform Zinbiel algebras were classified in [50].

Theorem 2.5: An arbitary n-dimensional (n ≥ 5) filiform Zinbiel algebra is isomorphic to
one of the following pairwise non-isomorphic algebras:

F1n : ei ◦ ej = Cj
i+j−1ei+j, 2 ≤ i + j ≤ n − 1;

F2n : ei ◦ ej = Cj
i+j−1ei+j, 2 ≤ i + j ≤ n − 1, en ◦ e1 = en−1;

F3n : ei ◦ ej = Cj
i+j−1ei+j, 2 ≤ i + j ≤ n − 1, en ◦ en = en−1.
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2.2. Basic definitions andmethods

Throughout this paper, we are using the notations andmethods well written in [38,39] and
adapted for the Zinbiel case with some modifications. From now, we will give only some
important definitions.

Let (A, ◦) be a Zinbiel algebra and V a vector space. Then the C-linear space Z2(A,V)

is defined as the set of all bilinear maps θ : A × A −→ V, such that

θ(x ◦ y, z) = θ(x, y ◦ z + z ◦ y).

Its elements will be called cocycles. For a linear map f from A to V, if we write δf : A ×
A −→ V by δf (x, y) = f (x ◦ y), then δf ∈ Z2(A,V). We define B2(A,V) = {θ = δf : f ∈
Hom(A,V)}. One can easily check that B2(A,V) is a linear subspace of Z2(A,V) whose
elements are called coboundaries. We define the second cohomology space H2(A,V) as the
quotient space Z2(A,V)

/
B2(A,V).

Let Aut(A) be the automorphism group of the Zinbiel algebra A and let φ ∈ Aut(A).
For θ ∈ Z2(A,V) define φθ(x, y) = θ(φ(x),φ(y)). Then φθ ∈ Z2(A,V). So, Aut(A) acts
on Z2(A,V). It is easy to verify that B2(A,V) is invariant under the action of Aut(A) and
so we have that Aut(A) acts on H2(A,V).

LetA be a Zinbiel algebra of dimensionm < n, andV be aC-vector space of dimension
n−m. For any θ ∈ Z2(A,V) define on the linear space Aθ := A ⊕ V the bilinear product
‘[−,−]Aθ ’ by [x + x′, y + y′]Aθ = x ◦ y + θ(x, y) for all x, y ∈ A, x′, y′ ∈ V. The algebraAθ

is a Zinbiel algebra which is called an (n − m)-dimensional central extension of A by V.
Indeed, we have, in a straightforward way, that Aθ is a Zinbiel algebra if and only if θ ∈
Z2(A,V).

We also call the set Ann(θ) = {x ∈ A : θ(x,A) + θ(A, x) = 0} the annihilator of θ . We
recall that the annihilator of an algebra A is defined as the ideal Ann(A) = {x ∈ A : x ◦
A + A ◦ x = 0} and observe that Ann(Aθ ) = (Ann(θ) ∩ Ann(A)) ⊕ V.

We have the next key result:

Lemma 2.6: Let A be an n-dimensional Zinbiel algebra such that dim(Ann(A)) = m 
=
0. Then there exists, up to isomorphism, a unique (n − m)-dimensional Zinbiel algebra A′
and a bilinear map θ ∈ Z2(A,V) with Ann(A) ∩ Ann(θ) = 0, where V is a vector space of
dimension m, such that A ∼= A′

θ and A/Ann(A) ∼= A′.

However, in order to solve the isomorphism problem we need to study the action of
Aut(A) on H2(A,V). To do that, let us fix e1, . . . , es a basis of V, and θ ∈ Z2(A,V). Then
θ can be uniquely written as θ(x, y) = ∑s

i=1 θi(x, y)ei, where θi ∈ Z2(A,C). Moreover,
Ann(θ) = Ann(θ1) ∩ Ann(θ2) ∩ . . . ∩ Ann(θs). Further, θ ∈ B2(A,V) if and only if all
θi ∈ B2(A,C).

Definition 2.7: Let A be an algebra and I be a subspace of Ann(A). If A = A0 ⊕ I then I
is called an annihilator component of A.

Definition 2.8: A central extension of an algebra A without annihilator component is
called a non-split central extension.
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It is not difficult to prove (see [39, Lemma 13]), that given a Zinbiel algebra Aθ , if
we write as above θ(x, y) = ∑s

i=1 θi(x, y)ei ∈ Z2(A,V) and we have Ann(θ) ∩ Ann(A) =
0, then Aθ has an annihilator component if and only if [θ1], [θ2], . . . , [θs] are linearly
dependent in H2(A,C).

Let V be a finite-dimensional vector space. The Grassmannian Gk(V) is the set
of all k-dimensional linear subspaces of V. Let Gs(H2(A,C)) be the Grassman-
nian of subspaces of dimension s in H2(A,C). There is a natural action of Aut(A)

on Gs(H2(A,C)). Let φ ∈ Aut(A). For W = 〈[θ1], [θ2], . . . , [θs]〉 ∈ Gs(H2(A,C)) define
φW = 〈[φθ1], [φθ2], . . . , [φθs]〉. Then φW ∈ Gs(H2(A,C)). We denote the orbit of W ∈
Gs(H2(A,C)) under the action of Aut(A) by Orb(W). Since given

W1 = 〈[θ1] , [θ2] , . . . , [θs]〉 , W2 = 〈[ϑ1] , [ϑ2] , . . . , [ϑs]〉 ∈ Gs
(
H2 (A,C)

)
,

we easily have that in case W1 = W2, then
⋂s

i=1 Ann(θi) ∩ Ann(A) = ⋂s
i=1 Ann(ϑi) ∩

Ann(A), and so we can introduce the set

Ts(A) =
{
W = 〈[θ1] , [θ2] , . . . , [θs]〉 ∈ Gs

(
H2 (A,C)

)
:

s⋂
i=1

Ann(θi) ∩ Ann(A) = 0

}
,

which is stable under the action of Aut(A).
Now, let V be an s-dimensional linear space and let us denote by E(A,V) the set of all

non-split s-dimensional central extensions of A by V. We can write

E (A,V) =
{
Aθ : θ

(
x, y

) =
s∑

i=1
θi

(
x, y

)
ei and 〈[θ1] , [θ2] , . . . , [θs]〉 ∈ Ts(A)

}
.

We also have the next result, which can be proved as in [39, Lemma 17].

Lemma 2.9: Let Aθ ,Aϑ ∈ E(A,V). Suppose that θ(x, y) = ∑s
i=1 θi(x, y)ei and ϑ(x, y) =∑s

i=1 ϑi(x, y)ei. Then the Zinbiel algebras Aθ and Aϑ are isomorphic if and only if

Orb 〈[θ1] , [θ2] , . . . , [θs]〉 = Orb 〈[ϑ1] , [ϑ2] , . . . , [ϑs]〉 .

From here, there exists a one-to-one correspondence between the set of Aut(A)-orbits
onTs(A) and the set of isomorphism classes of E(A,V). Consequently we have a procedure
that allows us, given the Zinbiel algebra A′ of dimension n−s, to construct all non-split
central extensions of A′. This procedure would be:

2.3. Procedure

(1) For a given Zinbiel algebraA′ of dimension n − s, determine H2(A′,C), Ann(A′) and
Aut(A′).

(2) Determine the set of Aut(A′)-orbits on Ts(A′).
(3) For each orbit, construct the Zinbiel algebra corresponding to a representative of it.

Finally, let us introduce some of notation. Let A be a Zinbiel algebra with a basis
e1, e2, . . . , en. Then by �i,j we will denote the bilinear form �i,j : A × A −→ C with
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�i,j(el, em) = δilδjm. Then the set {�i,j : 1 ≤ i, j ≤ n} is a basis for the linear space of
the bilinear forms on A. Then every θ ∈ Z2(A,C) can be uniquely written as θ =∑

1≤i,j≤n cij�i,j, where cij ∈ C.

3. Central extension of filiform Zinbiel algebras

Proposition 3.1: Let F1n, F2n and F3n be n-dimensional filiform Zinbiel algebras defined in
Theorem 2.5. Then:

• A basis of Z2(Fkn,C) is formed by the following cocycles

Z2(F1n,C) =
〈
�1,1,�1,n,�n,1,�n,n,

s−1∑
i=1

Ci−1
s−1�i,s−i; 3 ≤ s ≤ n

〉
,

Z2(Fkn,C) =
〈
�1,1,�1,n,�n,1,�n,n,

s−1∑
i=1

Ci−1
s−1�i,s−i; 3 ≤ s ≤ n − 1

〉
, k = 2, 3.

• A basis of B2(Fkn,C) is formed by the following coboundaries

B2(F1n,C) =
〈
�1,1,

s−1∑
i=1

Ci−1
s−1�i,s−i, 3 ≤ s ≤ n − 1

〉
,

B2(F2n,C) =
〈
�1,1,

s−1∑
i=1

Ci−1
s−1�i,s−i, 3 ≤ s ≤ n − 2,

n−2∑
i=1

Ci−1
n−2�i,n−1−i + �n,1

〉
,

B2(F3n,C) =
〈
�1,1,

s−1∑
i=1

Ci−1
s−1�i,s−i, 3 ≤ s ≤ n − 2,

n−2∑
i=1

Ci−1
n−2�i,n−1−i + �n,n

〉
.

• A basis of H2(Fkn,C) is formed by the following cocycles

H2(F1n,C) =
〈
[�1,n], [�n,1], [�n,n],

[n−1∑
i=1

Ci−1
n−1�i,n−i

]〉
,

H2(Fkn,C) = 〈[�1,n], [�n,1], [�n,n]〉, k = 2, 3.

Proof: The proof follows directly from the definition of a cocycle. �

Proposition 3.2: Let φn
k ∈ Aut(Fkn). Then

φn
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 . . . 0 0
a2,1 a21,1 0 . . . 0 0
a3,1 ∗ a31,1 . . . 0 0
...

...
...

. . .
...

...
an−1,1 ∗ ∗ an−1

1,1 an−1,n
an,1 0 0 . . . 0 an,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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φn
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 . . . 0 0
a2,1 a21,1 0 . . . 0 0
a3,1 ∗ a31,1 . . . 0 0
...

...
...

. . .
...

...
an−1,1 ∗ ∗ an−1

1,1 an−1,n
an,1 0 0 . . . 0 an−2

1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

φn
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 . . . 0 0
a2,1 a21,1 0 . . . 0 0
a3,1 ∗ a31,1 . . . 0 0
...

...
...

. . .
...

...
an−1,1 ∗ ∗ an−1

1,1 an−1,n

an,1 0 0 . . . 0 a(n−1)/2
1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.1. Central extensions of F1n

Let us denote

∇1 = [�1,n], ∇2 = [�n,1], ∇3 = [�n,n], ∇4 =
⎡
⎣n−1∑

j=1
Cj−1
n−1�j,n−j

⎤
⎦

and x = a1,1, y = an,n, z = an−1,n,w = an,1. Since⎛
⎜⎜⎜⎜⎜⎝

∗ . . . ∗ C0
n−1α

′
4 α′

1
∗ . . . C1

n−1α
′
4 0 0

... . . .
...

...
...

Cn−2
n−1α

′
4 . . . 0 0 0

α′
2 . . . 0 0 α′

3

⎞
⎟⎟⎟⎟⎟⎠

= (φn
1 )

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 C0
n−1α4 α1

0 0 0 · · · C1
n−1α4 0 0

0 0 0
... ··· 0 0

...
... ..

. Cn−1−i
n−1 α4 ··· ...

...
... 0 ··· 0

...
...

...

0 Cn−3
n−1α4 0

...
...

...
...

Cn−2
n−1α4 0 0 · · · 0 0 0
α2 0 0 · · · 0 0 α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φn
1 ,

for any θ = α1∇1 + α2∇2 + α3∇3 + α4∇4, we have the action of the automorphism group
on the subspace 〈θ〉 as

〈
(α1xy + α3yw + α4xz)∇1 + (α2xy + α3yw + (n − 1)α4xz)∇2 + α3y2∇3 + α4xn∇4

〉
.
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3.1.1. 1-dimensional central extensions of F1n
Let us consider the following cases:

(1) if α1 
= 0,α2 = α3 = α4 = 0, then by choosing x = 1, y = 1/α1, we have the repre-
sentative 〈∇1〉.

(2) if α2 
= 0,α3 = α4 = 0, then by choosing x = 1, y = 1/α2,α = α1/α2, we have the
family of representatives 〈α∇1 + ∇2〉.

(3) if α1 = α2,α3 
= 0,α4 = 0, then by choosing y = 1/
√

α3,w = −α2/α3, x = 1, we
have the representative 〈∇3〉.

(4) if α1 
= α2,α3 
= 0,α4 = 0, then by choosing x =
√

α3
α1−α2

, y = 1√
α3
,w = α2√

α3(α2−α1)
,

we have the representative 〈∇1 + ∇3〉.
(5) if (n − 1)α1 = α2,α3 = 0,α4 
= 0, then by choosing x = 1/ n

√
α4, y = 1, z = −α1/α4,

we have the representative 〈∇4〉.
(6) if (n − 1)α1 
= α2,α3 = 0,α4 
= 0, then by choosing x = 1/ n

√
α4, y = n√α4

α2−(n−1)α1 ,

z = − n√α4
α2−(n−1)α1 , we have the representative 〈∇2 + ∇4〉.

(7) if α3 
= 0,α4 
= 0, then by choosing x = 1/ n
√

α4, y = 1/
√

α3, z = α1−α2
(n−2)

√
α3α4

,

w = α2−(n−1)α1
(n−2) n√α4α3

, we have the representative 〈∇3 + ∇4〉.

It is easy to verify that all previous orbits are different, and so we obtain

T1(F1n) = Orb〈∇1〉 ∪ Orb〈α∇1 + ∇2〉 ∪ Orb〈∇3〉 ∪ Orb〈∇1 + ∇3〉
∪ Orb〈∇4〉 ∪ Orb〈∇2 + ∇4〉 ∪ Orb〈∇3 + ∇4〉.

3.1.2. 2-dimensional central extensions of F1n
Wemay assume that a 2-dimensional subspace is generated by

θ1 = α1∇1 + α2∇2 + α3∇3 + α4∇4,

θ2 = β1∇1 + β2∇2 + β3∇3.

Then we have the six following cases:

(1) if α4 
= 0,β3 
= 0, then we can suppose that α3 = 0. Now
(a) for (n − 1)α1 
= α2,β1 
= β2, by choosing x = (

(α2−(n−1)α1)(β2−β1)
α4

)1/(n−2), y =
β2−β1

β3
x, z = α1(β1−β2)

α4β3
x, w = −β1x/β3, we have the representative 〈∇2 +

∇3,∇2 + ∇4〉.
(b) for (n − 1)α1 
= α2,β1 = β2, by choosing x = (

α2−(n−1)α1
α4

√
β3

)1/(n−1), y = 1/
√

β3,
z = − α1

α4
√

β3
, w = −β1x/β3, we have the representative 〈∇3,∇2 + ∇4〉.

(c) for (n − 1)α1 = α2,β1 
= β2, by choosing x = 1/ n
√

α4, y = β2−β1
β3

x,
z = α1(β1−β2)

α4β3
x, w = −β1x/β3, we have the representative 〈∇2 + ∇3,∇4〉.



LINEAR ANDMULTILINEAR ALGEBRA 9

(d) for (n − 1)α1 = α2,β1 = β2, by choosing x= 1/ n
√

α4, y= 1/
√

β3,
z= − α1y/α4, w = −β1x/β3, we have the representative 〈∇3,∇4〉.

(2) if α4 
= 0,β3 = 0,β2 
= 0, then we can suppose that α2 = 0. Now
(a) for α3 
= 0, by choosing x = 1/ n

√
α4, y = 1/

√
α3, z = α1

(n−2)
√

α3α4
,

w = − (n−1)α1
(n−2) n√α4α3

, and α = β1/β2 we have the family of representatives 〈α∇1 +
∇2,∇3 + ∇4〉.

(b) for α3 = 0, (n − 1)β1 
= β2, then by choosing x = 1/ n
√

α4, y = 1,
z = − α1β2

α4((n−1)β1−β2)
and α = β1/β2, we have the family of representatives

〈α∇1 + ∇2,∇4〉α 
= 1
n−1

.
(c) for α3 = 0, (n − 1)β1 = β2 and α1 = 0, by choosing x = 1/ n

√
α4, y = 1, z = 0,

we have the representative 〈 1
n−1∇1 + ∇2,∇4〉.

(d) for α3 = 0, (n − 1)β1 = β2 and α1 
= 0, by choosing x = 1/ n
√

α4, y = − n√α4
(n−1)α1 ,

z = n√α4
(n−1)α4 , we have the representative 〈 1

n−1∇1 + ∇2,∇2 + ∇4〉.
(3) if α4 
= 0,β3 = β2 = 0,β1 
= 0, then

(a) for α3 
= 0, by choosing x = 1/ n
√

α4, y = 1/
√

α3, z = α1−α2
(n−2)

√
α3α4

,

w = α2−(n−1)α1
(n−2) n√α4α3

, we have the representative 〈∇1,∇3 + ∇4〉.
(b) for α3 = 0, after a linear combination of θ1 and θ2 we can suppose that

(n − 1)α1 = α2, by choosing x = 1/ n
√

α4, y = 1, z = −α1/α4, we have the rep-
resentative 〈∇1,∇4〉.

(4) if α4 = 0,α3 
= 0,β2 
= 0, then
(a) for β1 
= β2, after a linear combination of θ1 and θ2 we can suppose that α1 = α2,

by choosing y = 1/
√

α3,w = −α2/α3, x = 1 and α = β1/β2 we have the family
of representatives 〈α∇1 + ∇2,∇3〉α 
=1.

(b) for β1 = β2,α1 = α2, after a linear combination of θ1 and θ2 we have the repre-
sentative 〈∇1 + ∇2,∇3〉.

(c) for β1 = β2,α1 
= α2, by choosing x =
√

α3
α1−α2

, y = 1/
√

α3,w = α2√
α3(α2−α1)

, we
have the representative 〈∇1 + ∇2,∇1 + ∇3〉.

(5) if α4 = 0,α3 
= 0,β2 = 0,β1 
= 0, then after a linear combination of θ1 and θ2 we can
suppose that α1 = α2, by choosing y = 1/

√
α3,w = −α2/α3, x = 1 and α = β1/β2

we have the representative 〈∇1,∇3〉.
(6) if α3 = α4 = 0,β3 = 0, then we have the representative 〈∇1,∇2〉.

It is easy to verify that all previous orbits are different, and so we obtain

T2(F1n) = Orb〈∇1,∇2〉 ∪ Orb〈∇1,∇3〉 ∪ Orb〈∇1,∇3 + ∇4〉 ∪ Orb〈∇1,∇4〉

∪ Orb
〈

1
n − 1

∇1 + ∇2,∇2 + ∇4

〉
∪ Orb〈∇1 + ∇2,∇1 + ∇3〉

∪ Orb〈α∇1 + ∇2,∇3〉 ∪ Orb〈α∇1 + ∇2,∇3 + ∇4〉
∪ Orb〈α∇1 + ∇2,∇4〉 ∪ Orb〈∇2 + ∇3,∇2 + ∇4〉
∪ Orb〈∇2 + ∇3,∇4〉 ∪ Orb〈∇3,∇2 + ∇4〉 ∪ Orb〈∇3,∇4〉.
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3.1.3. 3-dimensional central extensions of F1n
Wemay assume that a 3-dimensional subspace is generated by

θ1 = α1∇1 + α2∇2 + α3∇3 + α4∇4,

θ2 = β1∇1 + β2∇2 + β3∇3,

θ3 = γ1∇1 + γ2∇2.

Then we have the following cases:

(1) if α4 
= 0,β3 
= 0, γ2 
= 0, then we can suppose that α2 = 0, α3 = 0, β2 = 0 and
(a) for γ1 
= γ2, (n − 1)γ1 
= γ2, then by choosing x = 1/ n

√
α4, y = 1/

√
β3, z =

α1γ2y
α4((n−1)γ1−γ2)

, w = β1γ2x
α4(γ1−γ2)

, we have the family of representatives 〈α∇1 +
∇2,∇3,∇4〉α 
∈{1, 1

n−1 }.
(b) for γ1 = γ2, then

(i) for β1 
= 0, by choosing x = 1/ n
√

α4, y = β1x
β3

, z = α1y
(n−2)α4 , w = 0, we have

the representative 〈∇1 + ∇2,∇1 + ∇3,∇4〉.
(ii) for β1 = 0, by choosing x = 1/ n

√
α4, y = 1/

√
β3, z = α1y

(n−2)α4 , w = 0, we
have the representative 〈∇1 + ∇2,∇3,∇4〉.

(c) for (n − 1)γ1 = γ2, then
(i) for α1 
= 0, by choosing y = 1/

√
β3, z = −α1y

α4
, x = n−1√(n − 1)z, w =

− (n−1)β1x
(n−2)β3 , we have the representative 〈 1

n−1∇1 + ∇2,∇3,∇2 + ∇4〉.
(ii) for α1 = 0, by choosing x = 1/ n

√
α4, y = 1/

√
β3, z = 0, w = − (n−1)β1x

(n−2)β3 , we
have the representative 〈 1

n−1∇1 + ∇2,∇3,∇4〉.
(2) if α4 
= 0,β3 
= 0, γ2 = 0, γ1 
= 0, then we can suppose that α3 = 0 and after a linear

combination of θ1, θ2, θ3 we can suppose that (n − 1)α1 = α2,β1 = β2. By choos-
ing x = 1/ n

√
α4, y = 1/

√
β3, z = −α1y/α4,w = −β1x/β3, we have the representative

〈∇1,∇3,∇4〉.
(3) if α4 
= 0,β3 = 0,β2 
= 0, γ2 = 0, γ1 
= 0, then and after a linear combination of

θ1, θ2, θ3 we can suppose that α1 = α2 = β1 = 0. Now
(a) for α3 
= 0, by choosing y = 1/

√
α3, x = 1/ n

√
α4 we have the representative

〈∇1,∇2,∇3 + ∇4〉.
(b) for α3 = 0, we have the representative 〈∇1,∇2,∇4〉.

(4) if α4 = 0,β3 = 0, γ2 = 0, then we have the representative 〈∇1,∇2,∇3〉.

It is easy to verify that all previous orbits are different, and so we obtain

T3(F1n) = Orb〈∇1,∇2,∇3〉 ∪ Orb〈∇1,∇2,∇3 + ∇4〉 ∪ Orb〈∇1,∇2,∇4〉

∪ Orb〈∇1 + ∇2,∇1 + ∇3,∇4〉 ∪ Orb
〈

1
n − 1

∇1 + ∇2,∇3,∇2 + ∇4

〉

∪ Orb〈α∇1 + ∇2,∇3,∇4〉 ∪ Orb〈∇1,∇3,∇4〉.

3.1.4. 4-dimensional central extensions of F1n
There is only one 4-dimensional non-split central extension of the algebra F1n. It is defined
by 〈∇1,∇2,∇3,∇4〉.
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3.1.5. Non-split central extensions of F1n
So we have the next theorem

Theorem 3.3: An arbitrary non-split central extension of the algebra F1n is isomorphic to one
of the following pairwise non-isomorphic algebras

• one-dimensional central extensions:

μn+1
1 , μn+1

2 (α), μn+1
3 , μn+1

4 , F1n+1, F
2
n+1, F

3
n+1

• two-dimensional central extensions:

μn+2
5 , μn+2

6 , μn+2
7 , μn+2

1 , μn+2
8 , μn+2

9 , μn+2
10 (α), μn+2

11 (α), μn+2
2 (α),

μn+2
12 , μn+2

4 , μn+2
13 , μn+2

3

• three-dimensional central extensions:

μn+3
14 , μn+3

15 , μn+3
5 , μn+3

9 , μn+3
16 , μn+3

10 (α), μn+3
6

• four-dimensional central extensions:

μn+4
14

with α ∈ C.

3.2. Central extensions of F2n

Let us denote

∇1 = [�1,n], ∇2 = [�n,1], ∇3 = [�n,n]

and x = a1,1,w = an,1. Let θ = α1∇1 + α2∇2 + α3∇3. Then by⎛
⎜⎜⎜⎜⎜⎝

∗ . . . 0 0 α′
1

0 . . . 0 0 0
... . . .

...
...

...
0 . . . 0 0 0
α′
2 . . . 0 0 α′

3

⎞
⎟⎟⎟⎟⎟⎠ = (φn

2 )
T

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0 0 α1
0 . . . 0 0 0
... . . .

...
...

...
0 . . . 0 0 0
α2 . . . 0 0 α3

⎞
⎟⎟⎟⎟⎟⎠φn

2 ,

we have the action of the automorphism group on the subspace 〈θ〉 as〈
xn−2(xα1 + wα3)∇1 + xn−2(xα2 + wα3)∇2 + x2n−4α3∇3

〉
.

3.2.1. 1-dimensional central extensions of F2n
Let us consider the following cases:

(1) if α3 = 0, then
(a) for α2 = 0,α1 
= 0, we have the representative 〈∇1〉.
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(b) for α2 
= 0, by choosing x = α
−1/(n−1)
2 and α = α1/α2, we have the family of

representatives 〈α∇1 + ∇2〉.
(2) if α3 
= 0, then

(a) for α1 
= α2, by choosing x = (α2−α1
α3

)1/(n−3),w = − xα1
α3

we have the representa-
tive 〈∇2 + ∇3〉.

(b) for α1 = α2, by choosing w = − xα1
α3

we have the representative 〈∇3〉.

It is easy to verify that all previous orbits are different, and so we obtain

T1(F2n) = Orb〈∇1〉 ∪ Orb〈α∇1 + ∇2〉 ∪ Orb〈∇2 + ∇3〉 ∪ Orb〈∇3〉.

3.2.2. 2-dimensional central extensions of F2n
Wemay assume that a 2-dimensional subspace is generated by

θ1 = α1∇1 + α2∇2 + α3∇3,

θ2 = β1∇1 + β2∇2.

We consider the following cases:

(1) if α3 
= 0 and β1 
= β2, then after a linear combination of θ1 and θ2 we can suppose
that α1 = α2. Now,
(a) for β2 
= 0, by choosing x = β

−1/(n−1)
2 ,w = − xα1

α3
and α = β1/β2 we have the

family of respresentatives 〈α∇1 + ∇2,∇3〉α 
=1.
(b) for β2 = 0, by choosing x = β

−1/(n−1)
1 ,w = − xα1

α3
, we have the respresentative

〈∇1,∇3〉.
(2) if α3 
= 0 and β1 = β2, then

(a) for α1 
= α2, by choosing x = (α1−α2
α3

)1/(n−1),w = − xα2
α3

we have the representa-
tive 〈∇1 + ∇2,∇1 + ∇3〉.

(b) for α1 = α2, after a linear combination of θ1 and θ2 we have the representative
〈∇1 + ∇2,∇3〉.

(3) if α3 = 0, then we have the representative 〈∇1,∇2〉.

It is easy to verify that all previous orbits are different, and so we obtain

T2(F2n) = Orb〈∇1,∇2〉 ∪ Orb〈∇1,∇3〉 ∪ Orb〈∇1 + ∇2,∇1 + ∇3〉 ∪ Orb〈α∇1 + ∇2,∇3〉.

3.2.3. 3-dimensional central extensions of F2n
There is only one 3-dimensional non-split central extension of the algebra F2n. It is defined
by 〈∇1,∇2,∇3〉.

3.2.4. Non-split central extensions of F2n
So we have the next result.

Theorem 3.4: An arbitrary non-split central extension of the algebra F2n is isomorphic to one
of the following pairwise non-isomorphic algebras
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• one-dimensional central extensions:

μn+1
1 , μn+1

2 (α) with α 
= 1
n − 3

, μn+1
8 , μn+1

12 , μn+1
16

• two-dimensional central extensions:

μn+2
5 , μn+2

6 , μn+2
9 , μn+2

10 (α) with α 
= 1
n − 4

, μn+2
16

• three-dimensional central extensions:

μn+3
14

with α ∈ C.

3.3. Central extensions of F3n

Let us denote

∇1 = [�1,n], ∇2 = [�n,1], ∇3 = [�n,n]

and x = a1,1,w = an,1. Let θ = α1∇1 + α2∇2 + α3∇3. Then by⎛
⎜⎜⎜⎜⎜⎝

∗ . . . 0 0 α′
1

0 . . . 0 0 0
... . . .

...
...

...
0 . . . 0 0 0
α′
2 . . . 0 0 α′

3

⎞
⎟⎟⎟⎟⎟⎠ = (φn

3 )
T

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0 0 α1
0 . . . 0 0 0
... . . .

...
...

...
0 . . . 0 0 0
α2 . . . 0 0 α3

⎞
⎟⎟⎟⎟⎟⎠φn

3 ,

we have the action of the automorphism group on the subspace 〈θ〉 as〈
x(n−1)/2(xα1 + wα3)∇1 + x(n−1)/2(xα2 + wα3)∇2 + xn−1α3∇3

〉
.

3.3.1. 1-dimensional central extensions of F3n
Let us consider the following cases:

(1) if α3 = 0, then
(a) for α2 = 0,α1 
= 0, by choosing x = α

−2/(n+1)
1 , we have the representative 〈∇1〉.

(b) for α2 
= 0, by choosing x = α
−2/(n+1)
2 and α = α1/α2 we have the family of

representatives 〈α∇1 + ∇2〉.
(2) if α3 
= 0, then

(a) for α2 
= α1, by choosing x = (α2−α1
α3

)2/(n−3),w = − xα1
α3

we have the representa-
tive 〈∇2 + ∇3〉.

(b) for α2 = α1, by choosing w = − xα1
α3

we have the representative 〈∇3〉.

It is easy to verify that all previous orbits are different, and so we obtain

T1(F3n) = Orb〈∇1〉 ∪ Orb〈α∇1 + ∇2〉 ∪ Orb〈∇2 + ∇3〉 ∪ Orb〈∇3〉.
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3.3.2. 2-dimensional central extensions of F3n
Wemay assume that a 2-dimensional subspace is generated by

θ1 = α1∇1 + α2∇2 + α3∇3,

θ2 = β1∇1 + β2∇2.

We consider the following cases:

(1) if α3 
= 0 and β1 
= β2, then after a linear combination of θ1 and θ2 we can suppose
that α1 = α2. Now,
(a) for β2 
= 0, by choosing x = β

−2/(n+1)
2 ,w = − xα1

α3
and α = β1/β2 we have the

family of respresentatives 〈α∇1 + ∇2,∇3〉α 
=1.
(b) for β2 = 0, by choosing x = β

−2/(n+1)
1 ,w = − xα1

α3
, we have the respresentative

〈∇1,∇3〉.
(2) if α3 
= 0 and β1 = β2, then

(a) for α1 
= α2, by choosing x = (α1−α2
α3

)2/(n−3),w = − xα2
α3

we have the representa-
tive 〈∇1 + ∇2,∇1 + ∇3〉.

(b) for α1 = α2, after a linear combination of θ1 and θ2 we have the representative
〈∇1 + ∇2,∇3〉.

(3) if α3 = 0, then we have the representative 〈∇1,∇2〉.

It is easy to verify that all previous orbits are different, and so we obtain

T2(F3n) = Orb〈∇1,∇2〉 ∪ Orb〈∇1,∇3〉 ∪ Orb〈∇1 + ∇2,∇1 + ∇3〉 ∪ Orb〈α∇1 + ∇2,∇3.〉

3.3.3. 3-dimensional central extensions of F3n
There is only one 3-dimensional non-split central extension of the algebra F3n. It is defined
by 〈∇1,∇2,∇3〉.

3.3.4. Non-split central extensions of F3n
So we have the next theorem.

Theorem 3.5: An arbitrary non-split central extension of the algebra F3n is isomorphic to one
of the following pairwise non-isomorphic algebras

• one-dimensional central extensions:

μn+1
7 , μn+1

11 (α), μn+1
12 , μn+1

3

• two-dimensional central extensions:

μn+2
15 , μn+2

6 , μn+2
9 , μn+2

10 (α)

• three-dimensional central extensions:

μn+3
14

with α ∈ C.
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Appendix. The list of the algebras

μn
1 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, e1 ◦ en = en−1,

μn
2(α) : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, e1 ◦ en = αen−1, en ◦ e1 = en−1,

μn
3 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, en ◦ en = en−1,

μn
4 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, e1 ◦ en = en−1, en ◦ en = en−1,

μn
5 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 3, e1 ◦ en = en−1, en ◦ e1 = en−2,

μn
6 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 3, e1 ◦ en = en−1, en ◦ en = en−2,

μn
7 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, e1 ◦ en = en−1, en ◦ en = en−2,

μn
8 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, e1 ◦ en = 1
n − 3

en−1, en ◦ e1 = en−2 + en−1,

μn
9 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 3, e1 ◦ en = en−2 + en−1, en ◦ e1 = en−1,

en ◦ en = en−2

μn
10(α) : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 3, e1 ◦ en = αen−1, en ◦ e1 = en−1,

en ◦ en = en−2,

μn
11(α) : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, e1 ◦ en = αen−1, en ◦ e1 = en−1,

en ◦ en = en−2,

μn
12 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, en ◦ e1 = en−2 + en−1, en ◦ en = en−1,

μn
13 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 2, en ◦ e1 = en−2, en ◦ en = en−1,

μn
14 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 4, e1 ◦ en = en−2, en ◦ e1 = en−1, en ◦ en = en−3,

μn
15 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 3, e1 ◦ en = en−2, en ◦ e1 = en−1, en ◦ en = en−3,

μn
16 : ei ◦ ej = Cj

i+j−1, 2 ≤ i + j ≤ n − 3, e1 ◦ en = 1
n − 4

en−1, en ◦ e1 = en−3 + en−1,

en ◦ en = en−2.
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