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Thepresent paper is devoted to thedescriptionof rigid solvable Leib-

niz algebras. In particular, we prove that solvable Leibniz algebras

under some conditions on the nilradical are rigid and we describe

four-dimensional solvable Leibniz algebras with three-dimensional

rigid nilradical. We show that the Grunewald–O’Halloran’s conjec-

ture “any n-dimensional nilpotent Lie algebra is a degeneration of

some algebra of the same dimension” holds for Leibniz algebras of

dimensions less than four. The algebra of level one, which is omitted

in the 1991 Gorbatsevich’s paper, is indicated.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Largely because of their importance to string theory, quantum field theory and other branches of

fundamental research in mathematical physics, noncommutative analogs of many classical construc-

tions have received much attention in the past few years [1,2].
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The noncommutative analog of Lie algebras are Leibniz algebras, discovered by Loday when he

handled periodicity phenomena in algebraic K-theory [3]. This algebraic structure found applications

in several fields as Physics and Geometry [4–7].

Important subjects playing a relevant role in Mathematics and Physics are degenerations, contrac-

tions and deformations of Lie and Leibniz algebras. Namely, in [8] the notion of contractions of Lie

algebras on physical grounds was introduced: if two physical theories (like relativistic and classical

mechanics) are related by a limiting process, then the associated invariance groups (like the Poincaré

and Galilean groups) should also be related by some limiting process. If the velocity of light is as-

sumed to go to infinity, relativistic mechanics “transforms” into classical mechanics. This also induces

a singular transition from the Poincaré algebra to the Galilean one.

Other example is a limiting process from quantummechanics to classical mechanics under � → 0

of the Planck constant, that corresponds to the contraction of the Heisenberg algebras to the abelian

ones of the same dimensions [9].

Nevertheless, as it was proved in [10], the notions of deformations, contractions and degenerations

are isomorphic over the fields R or C. Degenerations of Lie and Leibniz algebras were the subject of

numerous papers, see for instance [10–16] and references given therein, and their research continues

actively. These facts motivate that we focus our attention in the study of degenerations of solvable

Leibniz algebras.

In order to do so, we know that an n-dimensional Leibniz algebra may be considered as an element

λ of the affine variety Hom(V ⊗ V, V) via the mapping λ : V ⊗ V → V defining the Leibniz bracket

on a vector space V of dimension n over a field F . Since Leibniz algebras are defined via polynomial

identities, the set of n-dimensional Leibniz algebra structures, Leibn, forms an algebraic subset of the

variety Hom(V ⊗ V, V) and the linear reductive group GLn(F) acts on Leibn via change of basis, i.e.,

(g ∗ λ)(x, y) = g
(
λ

(
g−1(x), g−1(y)

))
, g ∈ GLn(F), λ ∈ Leibn .

The orbits Orb(−) under this action are the isomorphism classes of algebras. Note that solvable

(respectively, nilpotent) Leibniz algebras of the same dimension also form an invariant subvariety of

the variety of Leibniz algebras under the mentioned action.

Let V be an n-dimensional vector space over a field F . The bilinear maps V × V → V form an Fn
3

-

dimensional affine space. We shall consider the Zariski topology on this space. Recall, a set is called

irreducible if it cannot be represented as a union of two nontrivial closed subsets, otherwise it is called

reducible. Themaximal irreducible closed subset of a variety is called an irreducible component. From

algebraic geometry we know that an algebraic variety is a union of irreducible components and that

closures of open sets produce irreducible components. Therefore, for the description of a variety it is

very important tofindall open sets. Sinceunder the above action thevariety of Leibniz algebras consists

of orbits of algebras, the description of the variety is reduced to find the open orbits. By Noetherian

consideration there are a finite number of open orbits. In any variety of algebras there are algebras

with open orbits (so-called rigid algebras). Thus, the closure of orbits of rigid algebras gives irreducible

components of the variety. Hence, to describe the variety of algebras it is enough to describe all rigid

algebras.

A powerful tool in the study of a variety of algebras is that for constructible subsets of algebraic

varieties, the closures with respect to the Euclidean and the Zariski topologies coincide. In particular,

for an algebraically closed field F , the limit in usual Euclidean topology leads to the same limit as in

the Zariski topology. It has lead to consideration of such notions as deformations and degenerations of

algebras. Existence or absence of degeneration in a given variety of algebras is revealed by construction

or by using invariant arguments. This approach is very effective in case of nilpotent and solvable

algebras.

The description of a variety of any class of algebras is a very difficult problem. Note that for the

description of the variety of nilpotent Lie algebraswith dimensions less than eight theworks [12,16,17]

are devoted. The complete description of orbits closure of four-dimensional Lie algebras is given in [13].

To the investigation of the variety of Leibniz algebras the work [18] is devoted. In particular, in [18]

it is described all irreducible components of the varieties of complex nilpotent Leibniz algebras of

dimension less than 5.
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On the other hand, Grunewald and O’Halloran in [19] proposed the following:

Conjecture: Any n-dimensional nilpotent Lie algebra is a degeneration of some algebra of the same

dimension.

In other words, there is not nilpotent rigid algebra in the variety of Lie algebras, although a rigid

Lie algebra exists in the subvariety of nilpotent Lie algebras. The statement is based on the fact that

second cohomology groups of rigid algebras are trivial, while for nilpotent Lie algebras, they are always

nontrivial. Similarly to thecaseof Lie algebras, Balavoineproved thegeneralprinciples fordeformations

and rigidity of Leibniz algebras [11].

In this paper we prove that solvable Leibniz algebras, whose nilradical is rigid in the variety of

nilpotent Leibniz algebras, cannot be obtained as a degeneration of a solvable Leibniz algebra with

different nilradical. In other words, any solvable Leibniz algebra with a given rigid nilradical, such that

there is not other solvable Leibniz algebra with the same nilradical, is rigid. The description of solvable

Leibniz algebras with three-dimensional rigid nilradical is obtained. Moreover, we prove that for the

case of Leibniz algebras the Conjecture above is true for dimension less than four. Finally, we find one

algebra which was omitted in the work [14].

Throughout the paper we consider finite-dimensional vector spaces and algebras over the field C.

Moreover, in the multiplication table of an algebra omitted products are assumed to be zero and if it

is not noticed we shall consider non-nilpotent solvable algebras.

2. Preliminaries

In this section we give necessary definitions and results for understanding main parts of the work.

Definition 2.1 ([3]). A vector space L over a field F with a binary operation [−, −] is called a Leibniz

algebra, if for any x, y, z ∈ L the so-called Leibniz identity holds

[x, [y, z]] = [[x, y], z] − [[x, z], y] .
Every Lie algebra is a Leibniz algebra, but the bracket in a Leibniz algebra does not necessarily need

to be skew-symmetric.

For a Leibniz algebra L consider the following lower central and derived series:

L1 = L, Lk+1 = [Lk, L1], k � 1,

L[1] = 1, L[s+1] = [L[s], L[s]], s � 1.

Definition 2.2. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there exists p ∈ N

(q ∈ N) such that Lp = 0 (respectively, L[q] = 0).

It is well known [20] that in Leibniz algebras case, in each dimension, there exists a unique (up to

isomorphism) algebra with maximal index of nilpotency whose multiplication table is:

NFn : [ei, e1] = ei+1, 1 � i � n − 1.

Denote by Leibn (respectively, by LNn and LRn) the set of all n-dimensional (respectively, nilpotent

and solvable) Leibniz algebras.

Remark 2.3. Null-filiform Leibniz algebras of dimension n can be characterized as n-dimensional

nilpotent Leibniz algebras such that the n-th term in the lower central series is nontrivial. This means

that their orbits are open sets in the variety of n-dimensional nilpotent Leibniz algebras with respect

to the Zariski topology, hence null-filiform Leibniz algebras of dimension n are rigid.

Let λ and μ be Leibniz algebras of the same dimension over a field F .

Definition 2.4. It is said that an algebra λ degenerates to an algebra μ, if Orb(μ) lies in the Zariski

closure of Orb(λ), Orb(λ). We denote this by λ → μ.
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The degeneration λ → μ is called a direct degeneration if there is not a chain of nontrivial degen-

erations of the form: λ → ν → μ.

The level of an algebra λ, denoted by levn(λ), is the maximum length of a chain of direct degener-

ations, which, of course, ends with the algebra an (the algebra with zero multiplication).

Remark 2.5. Recall that any n-dimensional algebra degenerates to the algebra an.

The following important result is due to Borel [21, 1.8 closed orbit lemma]:

Proposition 2.6. If G is a complex algebraic group and X is a complex algebraic variety with regular

action, then each orbit Orb(x), x ∈ X , is a smooth algebraic variety, open in its closure Orb(x). Its

boundary Orb(x) \ Orb(x) is a union of orbits of strictly lower dimension. In particular, the orbits of

minimal dimension are closed.

Recall that a subset Y ⊆ X is called constructible if it is a finite union of locally closed sets. By the

previousproposition, eachorbitOrb(x) is a constructible set, andso its closures relative to theEuclidean

and the Zariski topologies coincide [22, I. Corollary 1]. Therefore, the usual Euclidean topology on C
n3

leads to the same degenerations as does the Zariski topology.

In thecaseof thefield F be thecomplexnumbersC,wegiveanequivalentdefinitionofdegeneration.

Definition 2.7. Let g : (0, 1] → GLn(C), t �→ g(t) = gt , be a continuous map. We construct a

parameterized family of Leibniz algebras λt = (V, [−, −]t), t ∈ (0, 1], isomorphic to λ. For each t

the new Leibniz bracket [−, −]t on V is defined via the old one as follows:

[x, y]t = gt[g−1
t (x), g−1

t (y)], x, y ∈ V .

If for any x, y ∈ V there exists the limit

lim
t→0+[x, y]t = lim

t→0+ gt[g−1
t (x), g−1

t (y)] =: [x, y]0,
then [−, −]0 is a well-defined Leibniz bracket. The Leibniz algebra λ0 = (V, [−, −]0) is called a

degeneration of the algebra λ.

A constructible set inC
n becomes a semialgebraic set (a finite Boolean combination of solution sets

to polynomial equations and polynomial inequalities) in R
2n and by the curve selection lemma [23]

we have the powerful result:

Theorem 2.8 ([23]). (Analytic curve selection) Let A be a semialgebraic subset of R
n and x ∈ R

n a

point belonging to the closure of A, x /∈ A. Then there exists a Nash mapping γ : (−1, 1) → R
n such

that γ (0) = x and γ ((0, 1)) ⊂ A.

Replacing A by Orb(λ) = GLn(C) ∗ λ and x = λ0, and since Orb(λ) is a semialgebraic set in R
2n2

and λ0 ∈ Orb(λ), due to Theorem 2.8 we can assume the mapping g is a Nash mapping (which is

analytic and semialgebraic mapping).

Remark 2.9. It is easy to note that a rigid nilpotent (solvable) algebra cannot be obtained by degen-

eration of any other nilpotent (solvable) algebra.

Further we shall need the following results.

Proposition 2.10 ([17]). Let G be a reductive algebraic group over C with Borel subgroup B and let X

be an algebraic set on which G acts rationally. Then

G ∗ x = G ∗ (B ∗ x) for all x ∈ X.
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Note that for the classification of solvable Leibniz algebras with given nilradical, the number of

nil-independent derivations of the nilradical is important. Namely, for a solvable Leibniz algebra with

nilradical N, the dimension of the complementary vector space to N is not greater than the maximal

number of nil-independent derivations of N.

Theorem 2.11 ([24]). Let R be a solvable Leibniz algebra whose nilradical is NFn . Then there exists a

basis {e1, e2, . . . , en, x} of the algebra R such that the multiplication table of R with respect to this

basis has the following form:

RNFn :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 1 � i � n − 1,

[x, e1] = e1,

[ei, x] = −iei, 1 � i � n.

In [16,17] it was shown that the rigid nilpotent Lie algebras in dimensions less than seven are the

following:

n3 : [e1, e2] = −[e2, e1] = e3;
n4 : [e1, e2] = −[e2, e1] = e3, [e1, e3] = −[e3, e1] = e4;
n5 : [e1, e2] = −[e2, e1] = e3, [e1, e3] = −[e3, e1] = e4,

[e1, e4] = −[e4, e1] = e5, [e2, e3] = −[e3, e2] = e5;
n6 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e2, e3] = e5, [e2, e5] = e6, [e3, e4] = −e6.

Due to [18] we can present the list of three-dimensional nilpotent rigid Leibniz algebras:

λ4(α) : [e1, e1] = e3, [e2, e2] = αe3, [e1, e2] = e3, α 	= 0;
λ5 : [e2, e1] = e3, [e1, e2] = e3;
λ6 : [e1, e1] = e2, [e2, e1] = e3.

Proposition 2.12 ([18]). Let λ be a complex non Lie algebra of Leibn. Then λ → n2 ⊕ C
n−2, where

n2 : [e1, e1] = e2 is a two-dimensional non-abelian nilpotent Leibniz algebra.

Consider the following algebras:

p±
n : [e1, ei] = ei, [ei, e1] = ±ei, i � 2,

n
±
3 : [e1, e2] = e3, [e2, e1] = ±e3.

Theorem 2.13 ([14]). Let λ be an n-dimensional algebra. Then

1. If the algebra λ is skew-commutative, then levn(λ) = 1 if and only if it is isomorphic to p−
n or

to the algebra n
−
3 ⊕ an−3 (n � 3). In particular, the algebra λ is a Lie algebra.

2. If the algebra λ is commutative, then levn(λ) = 1 if and only if it is isomorphic to p+
n or to the

algebra n
+
3 ⊕ an−3 (n � 3). In particular, the algebra λ is a Jordan algebra.

Remark 2.14. We note that the algebra p+
n is not a Jordan algebra.
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3. Main results

We divide themain section into three subsections where we study the rigidness of solvable Leibniz

algebras with rigid nilradical, describe such four-dimensional algebras with three-dimensional radical

and present one algebra of level one, which was omitted in the work [14].

3.1. Rigidity of solvable Leibniz algebras with rigid nilradical

In this subsection we investigate the rigidity of solvable Leibniz algebras with rigid nilradical.

Definition 3.1. The algebras whose orbits are open sets in the variety Leibn with respect to the Zariski

topology are said to be rigid.

Remark 3.2. The notion of rigidity is characterized by the fact that the orbit of a rigid algebra does

not belong to the closure of the orbit of any other algebra.

Let N be a nilpotent Leibniz algebra. Denote by LRn(N) the set of all n-dimensional solvable Leibniz

algebras whose nilradical is N.

For any m (1 � m � n) define the subset ∧m ⊂ LRn such that ∧m = {λ = (cki,j)} with the

properties:

n∑
k1=n−m+1

n∑
k2=n−m+1

· · ·
n∑

ks−1=n−m+1

c
k1
i1,i2

c
k3
k1,i3

. . . c
ks
ks−1,is

= 0,

n − m + 1 � i1, i2, . . . , is � n, cki,j = 0, 1 � i, j � n, 1 � k � n − m,

where cki,j are structural constants and s any fixed number.

Let us observe that R ∈ ∧m if and only if R contains the nilpotent ideal

N = 〈{en−m+1, en−m+2, . . . , en}〉 satisfying R2 ⊆ N.

It is not difficult to see that ∧m is a Zariski closed subset of LRn, but it is not GLn(C)-stable. How-

ever, the set ∧m is B-stable, where B is the Borel subgroup of GLn(C) consisting of upper triangular

matrices.

Proposition 3.3. Let R1, R2 ∈ LRn and let R1 ∈ LRn(N1), R2 ∈ LRn(N2). If R1 → R2, then dimN2 �
dimN1.

Proof. Let dimN1 = m, then choose g ∈ GLn(C) such that R′ = g ∗ R1 ∈ ∧m. Since B ∗ R′ ∈ ∧m and

∧m is a closed set, then B ∗ R′ ∈ ∧m. By Proposition 2.10 and by condition R1 → R2 we conclude that

R2 ∈ GLn(C) ∗ ∧m. Therefore, the algebra R2 contains a nilpotent ideal of dimension m. Since N2 is

the nilradical of R2, we get dimN2 � m. �

Corollary 3.4. Let R1 ∈ LRn(N1) and R2 ∈ LRn(N2). If dimN1 = dimN2 and R1 → R2, thenN1 → N2.

Proof. Let gt be a family such that lim
t→0

gt∗R1 = R2. By Proposition 3.3 we have that lim
t→0

gt∗N1 is a

nilpotent ideal of R2. Therefore, we get dimN1 = dim ( lim
t→0

gt∗N1) = dimN2. SinceN2 is the nilradical

of R2, then lim
t→0

gt∗N1 = N2, i.e., N1 → N2. �

Consider now a solvable Leibniz algebra R with rigid nilradical N.

Proposition 3.5. Let R2 = N and suppose that there exists a solvable Leibniz algebra R1 such that

R1 → R. Then R1 ∈ LRn(N).
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Proof. Let N1 be the nilradical of the algebra R1. Note that by the Proposition 3.3 dimN1 � dimN.

If dimN1 < dimN, then we have dim R21 � dimN1 < dimN = dim R2, which is a contradiction

to the condition R1 → R by a consequence of [17, Theorem 1.4] (see also [18, Corollary]).

If dimN1 = dimN, then by Corollary 3.4 we conclude that N1 → N. Since N is a rigid algebra, then

we get N1
∼= N. �

Corollary 3.6. The algebra RNFn is a rigid algebra of the variety LRn+1.

From the above, we conclude that for a rigid nilpotent Leibniz algebra N in the variety LNs and for

R ∈ LRn(N) there are only twopossibilities: R is rigid inLRn or there exists a rigid algebra R1 ∈ LRn(N)
such that R1 → R.

Next proposition establishes a relationship between a solvable algebra and its nilradical.

Proposition 3.7. For any solvable algebraRwith nilradicalN there exists a degeneration: R → N⊕C
k ,

where k = dim R/N.

Proof. We choose a basis {e1, e2, . . . , ek, ek+1, . . . , en} of R such that N = 〈{ek+1, . . . , en}〉. A de-

generation is given by the family gt defined as follows:

gt(ei) =
{
t−1ei if 1 � i � k,

ei if k + 1 � i � n.

Indeed,

gt∗[ei, ej] = gt([g−1
t (ei), g

−1
t (ej)]) = t2gt([ei, ej]) = t2[ei, ej] → 0, 1 � i, j � k,

gt∗[ei, ej] = gt([g−1
t (ei), g

−1
t (ej)]) = tgt([ei, ej]) = t[ei, ej] → 0,

1 � i � k, k + 1 � j � n,

gt∗[ei, ej] = gt([g−1
t (ei), g

−1
t (ej)]) = gt([ei, ej]) = [ei, ej], k + 1 � i, j � n. �

Now we present a family which will be useful in the sequel

gt(e1) = t−1e1, gt(e2) = t−1e2, gt(ei) = t−i+1ei, 3 � i � n,

that degenerates the algebra NFn to the so-called filiform algebra

Fn : [ei, e1] = ei+1, 2 � i � n − 1 (see [20]).

3.2. Classification of four-dimensional solvable Leibniz algebras with three-dimensional rigid nilradicals

In this subsection we classify four-dimensional solvable Leibniz algebras whose nilradical is rigid

and three-dimensional.

First of all, in the following propositionwe describe the derivations of the three-dimensional nilpo-

tent rigid Leibniz algebras λ4(α), λ5 and λ6. Recall that a derivation of a Leibniz algebra (L, [−, −])
is a F-linear map d : L → L such that d[x, y] = [d(x), y] + [x, d(y)], for all x, y ∈ L.

Proposition 3.8. In the algebras λ4(α), λ5 and λ6 there exist bases such that their derivations have

the following forms:

Der (λ4(α)) =

⎛
⎜⎜⎜⎝
a1 0 a3

0 b2 b3

0 0 a1 + b2

⎞
⎟⎟⎟⎠ , α 	= 1

4
; Der

(
λ4

(
1

4

))
=

⎛
⎜⎜⎜⎝
a1 a2 a3

0 a1 b3

0 0 2a1

⎞
⎟⎟⎟⎠ ;

Der(λ5) =

⎛
⎜⎜⎜⎝
a1 0 a3

0 b2 b3

0 0 a1 + b2

⎞
⎟⎟⎟⎠ ; Der(λ6) =

⎛
⎜⎜⎜⎝
a1 a2 a3

0 2a1 a2

0 0 3a1

⎞
⎟⎟⎟⎠ .
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Proof. Taking the following change of basis in the algebra λ4(α):

f1 = e1, f2 = e2 + βe1, f3 = e3,

with β = − 1+√
1−4α
2

, we deduce that the multiplications of λ4(α) become of the form:

[f1, f1] = f3, [f2, f1] = βf3, [f1, f2] = (1 + β)f3.

If β 	= − 1
2
(i.e., α 	= 1

4
), then setting f ′1 = f1 − 1

2β+1
f2, f ′2 = 1

β
f2, we derive

[f2, f1] = f3, [f1, f2] = β ′f3, (1)

where β ′ =
√

1−4α−1√
1−4α+1

.

If β = − 1
2
(i.e., α = 1

4
), then putting f ′2 = −2f2, we get

λ4

(
1

4

)
: [f1, f1] = f3, [f2, f1] = f3, [f1, f2] = −f3. (2)

By checking the derivation property for algebras (1) and (2) we obtain

Der (λ4(α)) =

⎛
⎜⎜⎜⎝
a1 0 a3

0 b2 b3

0 0 a1 + b2

⎞
⎟⎟⎟⎠ , α 	= 1

4
; Der

(
λ4

(
1

4

))
=

⎛
⎜⎜⎜⎝
a1 a2 a3

0 a1 b3

0 0 2a1

⎞
⎟⎟⎟⎠ .

The derivations of the algebrasλ5 andλ6 are obtained directly applying the derivation property. �

Below, we prove that there do not exist four-dimensional solvable Leibniz algebras with nilradical

λ4(
1
4
).

Proposition 3.9. There are no four-dimensional solvable Leibniz algebras with three-dimensional

nilradical λ4(
1
4
).

Proof. Let us assume the contrary. Let R ∈ LR4
(
λ4

(
1
4

))
. We choose a basis {x, f1, f2, f3} of R such

that {f1, f2, f3} is the basis of λ4(
1
4
) chosen in the proof of Proposition 3.8. Since the algebra R is non-

nilpotent, the restriction of the rightmultiplication operatorRx toλ4

(
1
4

)
is a non-nilpotent derivation

of λ4

(
1
4

)
. Then using the form of this derivation from Proposition 3.8 we have

[f1, x] = a1f1 + a2f2 + a3f3, [f2, x] = a1f2 + b3f3, [f3, x] = 2a1f3,

[f1, f1] = f3, [f2, f1] = f3, [f1, f2] = −f3.

Since Rx|λ4
is non-nilpotent, we can suppose a1 = 1. It is easy to see that the right annihilator of the

algebra R only consists of {f3}. Therefore,
[f1, x] = f1 + a2f2 + a3f3, [f2, x] = f2 + b3f3, [f3, x] = 2f3,

[x, f1] = −f1 − a2f2 + α3f3, [x, f2] = −f2 + β3f3, [x, x] = γ3f3,

[f1, f1] = f3, [f2, f1] = f3, [f1, f2] = −f3.

Considering the Leibniz identity

0 = [x, [f2, f1]] = [[x, f2], f1] − [[x, f1], f2]
= [−f2 + β3f3, f1] − [−f1 − a2f2 + α3f3, f2] = −f3 − f3 = −2f3,

we have a contradiction with the assumption. �

The following theorem gives the classification of four-dimensional solvable Leibniz algebras with

three-dimensional rigid nilradicals.
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Theorem 3.10. Up to isomorphism, there exist three four-dimensional solvable Leibniz algebras with

three-dimensional rigid nilradicals. Namely,

R4
1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[e2, e1] = e3, [x, e1] = −e1,

[e1, e2] = βe3, [x, e2] = −βe2,

[e1, x] = e1, [e2, x] = βe2, [e3, x] = (β + 1)e3,

where β =
√

1−4α−1√
1−4α+1

for α 	= 0, 1
4
;

R4
2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[e2, e1] = e3, [x, e1] = −e1,

[e1, e2] = e3, [x, e2] = −e2,

[e1, x] = e1, [e2, x] = e2, [e3, x] = 2e3 ;

R4
3 :

⎧⎪⎨
⎪⎩

[e1, e1] = e2, [e2, e1] = e3, [x, e1] = −e1,

[e1, x] = e1, [e2, x] = 2e2, [e3, x] = 3e3.

Proof. Hereweshall use the formof thealgebraλ4(α)as in theproofofProposition3.8after thechange

of basis, i.e., the form λ4(β). Consider the class LR4 (λ4(β)). Due to Proposition 3.8, we can choose

a basis {x, f1, f2, f3} of the algebra of LR4 (λ4(β)) such that Rx|λ4(β) is a non-nilpotent derivation of

λ4(β). Therefore, in the algebra of LR4 (λ4(β)) we have the following products:

[f2, f1] = f3, [f1, f2] = βf3,

[f1, x] = a1f1 + a3f3, [f2, x] = b2f2 + b3f3, [f3, x] = (a1 + b2)f3.

It is easy to see that the right annihilator of the algebra consists of {f3}. Hence we get

[f1, x] = a1f1 + a3f3, [f2, x] = b2f2 + b3f3, [f3, x] = (a1 + b2)f3,

[x, f1] = −a1f1 + α3f3, [x, f2] = −b2f2 + β3f3, [x, x] = γ3f3,

[f2, f1] = f3, [f1, f2] = βf3.

Applying the Leibniz identity

0 = [x, [f2, f1]] = [[x, f2], f1] − [[x, f1], f2]
= [−b2f2 + β3f3, f1] − [−a1f1 + α3f3, f2] = −b2f3 + a1βf3,

we derive b2 = a1β .

SinceRx|λ4(β) is non-nilpotent, we have a1 = b2 	= 0. Consequently, we can assume a1 = 1, b2 =
β .

Taking the change of basis:

e1 = f1 − a3

β
f3, e2 = f2 − b3f3, e3 = f3, x′ = x − γ3

β + 1
f3,

we can suppose that a3 = b3 = γ3 = 0 and the multiplication table has the form

[e1, x] = e1, [e2, x] = βe2, [e3, x] = (1 + β)e3,

[x, e1] = −e1 + α3e3, [x, e2] = −βe2 + β3e3,

[e2, e1] = e3, [e1, e2] = βe3.
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Consider the chain of equalities

[x, [e1, x]] = [[x, e1], x] − [[x, x], e1] = [−e1 + α3e3, x] = −e1 + α3(1 + β)e3.

On the other hand, [x, [e1, x]] = [x, e1] = −e1 + α3e3.

Comparing the coefficients at the basis elements, we obtain α3β = 0, which implies α3 = 0.

Similarly, from

[x, [e2, x]] = [[x, e2], x] − [[x, x], e2] = [−βe2 + β3e3, x]
= −β2e2 + β3(1 + β)e3,

[x, [e2, x]] = [x, βe2] = −β2e2 + ββ3e3,

we deduce β3 = 0. Thus the algebra R4
1 is obtained.

Applying the above arguments for the class LR4(λ5) we derive the multiplication table:

[f1, x] = a1f1 + a3f3, [f2, x] = b2f2 + b3f3, [f3, x] = (a1 + b2)f3,

[x, f1] = −a1f1 + α3f3, [x, f2] = −b2f2 + β3f3, [x, x] = γ3f3,

[f2, f1] = f3, [f1, f2] = f3.

From the chain of equalities

0 = [x, [f2, f1]] = [[x, f2], f1] − [[x, f1], f2]
= [−b2f2 + β3f3, f1] − [−a1f1 + α3f3, f2] = −b2f3 + a1f3,

we have b2 = a1.

Since the restriction of the right multiplication operator on the element x to λ5 is non-nilpotent,

we have a1 = b2 	= 0 and without loss of generality we can suppose a1 = b2 = 1.

Taking the change of basis

e1 = f1 − a3f3, e2 = f2 − b3f3, e3 = f3, x′ = x − γ3

2
f3,

we can suppose that a3 = b3 = γ3 = 0 and the multiplication table has the form

[e1, x] = e1, [e2, x] = e2, [e3, x] = 2e3,

[x, e1] = −e1 + α3e3, [x, e2] = −e2 + β3e3,

[e2, e1] = e3, [e1, e2] = e3.

Applying the Leibniz identity to the brackets [x, [x, e1]] and [x, [e1, x]] with respect to the above

multiplication, we derive that α3 = β3 = 0. Thus, we obtain the algebra R4
2 .

Since an algebra ofLR4(λ6) is nothing else but the algebra RNF3, the algebra R
4
3 is directly followed

from Theorem 2.11. �

It should be noted that thanks to Proposition 3.5 and Corollary 3.6 the algebras R4
1, R

4
2 and R4

3 are

rigid in the variety LR4.
It is well known that rigid nilpotent Lie algebras in the variety of solvable Lie algebras are character-

istically nilpotent [25], and since they appear from dimension 7 and forward, we have that nilpotent

Lie algebras of dimensions less than 7 are not rigid (see [26]).

Remark 3.11. Since in [16,17] the lists of rigid nilpotent Lie algebras in dimensions less than seven

are presented (there are n3 − n6), it is sufficient to show their non-rigidity in the variety of solvable

Lie algebras LRn. We have found degenerations λ → μ in dimensions less than seven by explicitly

constructing gt ∈ GLn(C).
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Consider the following solvable Lie algebras of dimension less than seven, whose multiplication

tables are:

r3 : [e1, e2] = −[e2, e1] = e1 + e3, [e3, e2] = −[e2, e3] = e3;
r4 : [e1, e2] = −[e2, e1] = e1 + e3, [e1, e3] = −[e3, e1] = e4,

[e2, e3] = −[e2, e3] = e3;
r5 : [e1, e2] = −[e2, e1] = e3, [e1, e3] = −[e3, e1] = e2,

[e1, e4] = −[e4, e1] = e5, [e2, e3] = −[e3, e2] = e5;
r6 : [e1, e2] = e2 + e3, [e1, e3] = e3 + e4, [e1, e4] = 2e4 + e5,

[e1, e5] = 2e5, [e1, e6] = 3e6, [e2, e3] = e5, [e2, e5] = e6,

[e3, e4] = −e6.

It is easy to check that

r3 → n3 via the family gt defined as follows

gt(e1) = t−1e1, gt(e2) = t−1e2, gt(e3) = t−2e3;
r4 → n4 via the family gt defined as

gt(e1) = t−1e1, gt(e2) = t−1e2, gt(e3) = t−2e3, gt(e4) = t−3e4;
r5 → n5 via the family gt defined as

gt(e1) = t−1e1, gt(e2) = t−3e4, gt(e3) = t−4e5,

gt(e4) = −e2 + t−2e4, gt(e5) = −t−1e3 + t−3e5;
r6 → n6 via the family gt defined as

gt(e1) = t−1e1, gt(e2) = t−2e2, gt(e3) = t−3e3,

gt(e4) = t−4e4, gt(e5) = t−5e5, gt(e6) = t−7e6.

Remark 3.12. Consider the following n-dimensional solvable Leibniz algebra

Rn : [e1, e1] = e2, [ei, e1] = ei + ei+1, 2 � i � n − 1.

It is known that the algebra NFn is rigid in the variety of nilpotent Leibniz algebras [20]. How-

ever, this algebra it is not rigid in the variety of solvable Leibniz algebras. Indeed, the family of basis

transformations

gt(ei) = t−iei, 1 � i � n,

degenerates the algebra Rn to NFn.

Now we present a result which asserts that the Conjecture is true for the case of Leibniz algebras

of dimensions less than four.

Theorem 3.13. Any nilpotent Leibniz algebra of dimension less than four is not rigid.

Proof. From [18]we have a unique two-dimensional rigid nilpotent Leibniz algebran2 : [e1, e1] = e2.

It is easy to check that the algebra r2 with the multiplication table [e2, e1] = e2 degenerates to n2 via

the family of transformations:

gt : gt(e1) = t−1e1 − t−2e2, gt(e2) = t−2e2.

For the three-dimensional case we have the rigid nilpotent algebras λ4(α), λ5 and λ6.
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Let us consider the solvable Leibniz algebra

r3,2(α) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[e1, e1] = e3, [e1, e2] = −(2 + β)αe1 + e2 + e3,

[e2, e1] = (2 + β)αe1 − e2, [e2, e2] = αe3, α 	= 0,

[e3, e1] = βe3, [e3, e2] = (2 + β)βαe3,

where β = 1−4α+√
1−4α

2α
.

Then gt defined as

gt(e1) = t−1e1, gt(e2) = t−1e2, gt(e3) = t−2e3

degenerates the algebra r3,2(α) to the algebra λ4(α).
Consider the solvable Leibniz algebra

r3,1 : [e2, e1] = −e2 + e3, [e3, e1] = −2e3, [e1, e2] = e2 + e3, [e2, e2] = e3.

Then r3,1 → λ5 via gt , which is given by

gt(e1) = t−1e1, gt(e2) = t−2e2, gt(e3) = t−3e3.

Due to Remark 3.12, we get R3 → λ6. �

3.3. On the algebra of level one

In this subsection we show that the result of Theorem 2.13 is not complete. Namely, the algebra

n2 ⊕ an−2 is also an algebra of level one and it is not isomorphic to the algebras p±
n and n

±
3 ⊕ an−3.

Theorem 3.14. The n-dimensional commutative algebra n2 ⊕ an−2 is of level one.

Proof. Firstly, we shall prove that the algebra n2 ⊕ an−2 does not degenerate to p±
n and n

±
3 ⊕ an−3.

Since n2 ⊕ an−2 is commutative, it is enough to prove it for p+
n and n

+
3 ⊕ an−3.

(I) Let us assume the contrary, that there exists a family gt ∈ GLn(C) such that n2 ⊕ an−2 → p+
n .

Let gt be of the form

gt(ei) =
n∑

s=1

αi,s(t)es, g−1
t (ei) =

n∑
s=1

βi,s(t)es.

Consider

gt([g−1
t (e1), g

−1
t (ep)]) = β1,1(t)βp,1(t)gt(e2) = β1,1(t)βp,1(t)

n∑
i=1

α2,i(t)ei. (3)

Since in the algebra p+
n we have [e1, ep] = ep, for any p (2 � p � n), then

lim
t→0

gt([g−1
t (e1), g

−1
t (ep)]) = ep. (4)

Therefore, taking into account (3) and (4), we obtain

lim
t→0

β1,1(t)βp,1(t)α2,p(t) = 1, lim
t→0

β1,1(t)βp,1(t)α2,q(t) = 0, q 	= p.

In particular, for p = 2, q = 3, we have

lim
t→0

β1,1(t)β2,1(t)α2,2(t) = 1, lim
t→0

β1,1(t)β2,1(t)α2,3(t) = 0. (5)
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On the other hand, for p = 3, q = 2, we have

lim
t→0

β1,1(t)β3,1(t)α2,3(t) = 1, lim
t→0

β1,1(t)β3,1(t)α2,2(t) = 0. (6)

Now, taking into account (5) and (6), we have

lim
t→0

α2,3(t)

α2,2(t)
= lim

t→0

β1,1(t)β2,1(t)α2,3(t)

β1,1(t)β2,1(t)α2,2(t)
= 0,

lim
t→0

α2,3(t)

α2,2(t)
= lim

t→0

β1,1(t)β3,1(t)α2,3(t)

β1,1(t)β3,1(t)α2,2(t)
= ∞.

This is a contradictionwith the assumption of the existence of gt , i.e.,n2⊕an−2 does not degenerate

to p+
n .

(II) Let us show that n2 ⊕ an−2 does not degenerate to the algebra n
+
3 ⊕ an−3. Similarly as above

we can assume the existence of a family gt .

From (3) we get

gt([g−1
t (e1), g

−1
t (e1)]) = β1,1(t)β1,1(t)

n∑
i=1

α2,i(t)ei.

Since in the algebra n
+
3 ⊕ an−3 we have the product [e1, e1] = 0, then

lim
t→0

gt([g−1
t (e1), g

−1
t (e1)]) = 0.

Consequently, lim
t→0

β1,1(t)β1,1(t)α2,3(t) = 0.

Similarly, from (3) with p = 2, i.e.,

gt([g−1
t (e1), g

−1
t (e2)]) = β1,1(t)β2,1(t)

n∑
i=1

α2,i(t)ei

and of the product [e1, e2] = e3 in n
+
3 ⊕ an−3, we conclude

lim
t→0

β1,1(t)β2,1(t)α2,3(t) = 1.

Using the equalities

gt([g−1
t (e2), g

−1
t (e2)]) = gt

([
n∑

s=1

β2,s(t)es,
n∑

s=1

β2,s(t)es

])

= β2,1(t)β2,1(t)gt(e2) = β2,1(t)β2,1(t)
n∑

i=1

α2,i(t)ei

and [e2, e2] = 0, we derive lim
t→0

β2,1(t)β2,1(t)α2,3(t) = 0.

Thus, we summarize

lim
t→0

β1,1(t)β1,1(t)α2,3(t) = lim
t→0

β2,1(t)β2,1(t)α2,3(t) = 0,

lim
t→0

β1,1(t)β2,1(t)α2,3(t) = 1.

However,

lim
t→0

(
β1,1(t)β2,1(t)α2,3(t)

)2 = lim
t→0

β1,1(t)β1,1(t)α2,3(t) · lim
t→0

β2,1(t)β2,1(t)α2,3(t) = 0.

Thus, the algebra n2 ⊕ an−2 does not degenerate to n
+
3 ⊕ an−3.

Now we shall prove that levn(n2 ⊕ an−2) = 1. Assume that there exists a Leibniz algebra λ such

that n2 ⊕ an−2 → λ is a direct degeneration. Then dimOrb(λ) < dimOrb(n2 ⊕ an−2) (see [14]).
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If λ is a non-Lie Leibniz algebra, then by Proposition 2.12 we have that λ → n2 ⊕ an−2. Then there

exists a chain of direct degenerations λ → λ1 → · · · → λk → n2 ⊕ an−2. Again by [14], we have

that dimOrb(n2⊕an−2) < dimOrb(λk) < · · · < dimOrb(λ1) < dimOrb(λ). This is a contradiction
with dimOrb(λ) < dimOrb(n2 ⊕ an−2).

Let λ be a Lie algebra, then by assumption there exists a family gt such that

lim
t→0

gt∗(n2 ⊕ an−2) = λ.

Then from the following equalities

gt([g−1
t (ei), g

−1
t (ej)]) = gt

([
n∑

s=1

βi,s(t)es,
n∑

s=1

βj,s(t)es

])
= βi,1(t)βj,1(t)gt(e2),

we deduce λ(ei, ej) = λ(ej, ei). Since λ is a Lie algebra, it follows that it is abelian. Consequently, the

algebra n2 ⊕ an−2 is of level one. �

Remark 3.15. Another way of proving Theorem 3.14 would be the following one.

(I) We give other different reasons to establish that n2 ⊕ an−2 does not degenerate to p+
n .

1. The algebra n2 ⊕ an−2 is nilpotent, but the algebra p+
n is not nilpotent (see [18]).

2. The projectivization of the group Aut(n2 ⊕ an−2) is parabolic in the group GLn(C), then by

arguments given in [14], the algebra n2 ⊕ an−2 is of level one.

3. The invariants ci,j(λ) := tr(Rx)
i · tr(Ry)

j

tr
(
(Rx)i · (Ry)j

) do not coincide, because c1,1(n2 ⊕ an−2) = 0

and c1,1(p
+
n ) = 1

n − 1
(see [27]), where tr(Rx) denotes the trace invariant of the right

multiplication operator Rx .

4. n2 ⊕ an−2 is a Leibniz algebra, but p+
n is not a Leibniz algebra, since e2 = [e1, [e1, e2]] 	=

[[e1, e1], e2] − [[e1, e2], e1] = −e2.

5. Since the derivations of n2 ⊕ an−2 are⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,1 α1,2 α1,3 . . . αn−1 αn

0 2α1,1 0 . . . 0 0

0 α3,2 α3,3 . . . α3,n−1 α3,n

...
...

... . . .
...

...

0 αn,2 αn,3 . . . αn,n−1 αn,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the derivations of p+
n are⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0

0 α2,2 α2,3 . . . α2,n−1 α2,n

0 α3,2 α3,3 . . . α3,n−1 α3,n

...
...

... . . .
...

...

0 αn,2 αn,3 . . . αn,n−1 αn,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then dim (Der(n2 ⊕ an−2)) = n2 − 2n + 2 > dim
(
Der(p+

n )
) = n2 − 2n + 1 (see [18]).

(II) Wealsogiveotherdifferent reasons toestablish thatn2⊕an−2 doesnotdegenerate ton
+
3 ⊕an−3.
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1. Since Annr(n2 ⊕ an−2) = {e2, e3, . . . , en} and Annr(n
+
3 ⊕ an−3) = {e3, . . . , en}, we have

dim (Annr(n2 ⊕ an−2)) > dim
(
Annr(n

+
3 ⊕ an−3)

)
(see [18]). Wemight use Annl or Center

instead of Annr , since in these two algebras, Annr(n2 ⊕ an−2) = Annl(n2 ⊕ an−2) =
Center(n2 ⊕ an−2) and Annr(n

+
3 ⊕ an−3) = Annl(n

+
3 ⊕ an−3) = Center(n+

3 ⊕ an−3).
2. Similar arguments to the previous case 2 of (I) (see [14]).

3. Since the derivations of n
+
3 ⊕ an−3 are⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,1 0 α1,3 α1,4 . . . α1,n−1 α1,n

0 α2,2 α2,3 α2,4 . . . α2,n−1 α2,n

0 0 α1,1 + α2,2 0 . . . 0 0

0 0 α4,3 α4,4 . . . α4,n−1 α3,n

...
...

...
... . . .

...
...

0 0 αn,3 αn,4 . . . αn,n−1 αn,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then dim
(
Der(n+

3 ⊕ an−3)
)

= n2 − 3n + 4 and so dim (Der(n2 ⊕ an−2)) >

dim
(
Der(n+

3 ⊕ an−3)
)
(see [18]).
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