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Abstract. In the present paper we continue the investigation from Bovier and
Külske (1996 J. Stat. Phys. 83 751–59) and consider the SOS (solid-on-solid)
model on the Cayley tree of order k � 2. In the ferromagnetic SOS case on
the Cayley tree, we find three solutions to a class of period-4 height-periodic
boundary law equations and these boundary laws define up to three periodic
gradient Gibbs measures.
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1. Introduction

A solid-on-solid (SOS) model can be considered as a generalization of the Ising model,
which corresponds to E = {−1, 1}, or a less symmetric variant of the Potts model
with non-compact state space. SOS-models on the cubic lattice were analyzed in
[2, 3] where an analogue of the so-called Dinaburg–Mazel–Sinai theory was developed.
Besides interesting phase transitions in these models, the attention to them is motivated
by applications, in particular in the theory of communication networks; see, e.g., [1, 5,
7, 11].

In [6] it is shown that on the Cayley tree there are several tree automorphism invari-
ant gradient Gibbs measures and the existence of q different gradient Gibbs measures
for q-component models on the Cayley tree of order k � 2. To the best of our knowl-
edge, the first paper devoted to the SOS model on the Cayley tree is [10]. In [10] the
case of arbitrary m � 1 is treated and a vector-valued functional equation for possible
boundary laws of the model is obtained. Recall that each solution to this functional
equation determines a splitting Gibbs measure (SGM), in other words a tree-indexed
Markov chain which is also a Gibbs measure. Such measures can be obtained by propa-
gating spin values along the edges of the tree, from any site singled out to be the root to
the outside, with a transition matrix depending on initial Hamiltonian and the bound-
ary law solution. In particular the homogeneous (site-independent) boundary laws then
define translation-invariant SGMs. For a recent investigation of the influence of weakly
non-local perturbations in the interaction to the structure of Gibbs measures, see [9] in
the context of the Ising model.

The present paper is organized as follows. In section 2 we present the preliminaries
of the model. In the third section we construct gradient Gibbs measures for period 4
height-periodic boundary laws on the Cayley tree of order k � 2. Note that the results
in [6] are proved only on the Cayley tree of order two.

2. Preliminaries

Cayley tree. The Cayley tree Γk of order k � 1 is an infinite tree, i.e., a graph without
cycles, such that exactly k + 1 edges originate from each vertex. Let Γk = (V ,L) where
V is the set of vertices and L the set of edges. Two vertices x and y are called near-
est neighbors if there exists an edge l ∈ L connecting them. We will use the notation
l = 〈x, y〉. A collection of nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, . . . , 〈xd−1, y〉 is called a
path from x to y. The distance d(x, y) on the Cayley tree is the number of edges of the
shortest path from x to y.

For a fixed x0 ∈ V , called the root, we set

Wn = {x ∈ V | d(x, x0) = n}, Vn =

n⋃
m=0

Wm
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and denote

S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x.
SOS model . We consider a model where the spin takes values in the set of all integer

numbers Z := {. . . ,−1, 0, 1, . . .}, and is assigned to the vertices of the tree. A configura-
tion σ on V is then defined as a function x ∈ V �→ σ(x) ∈ Z; the set of all configurations
is Ω :=ZV .

The (formal) Hamiltonian of the SOS model is :

H(σ) = −J
∑

〈x,y〉∈L

|σ(x)− σ(y)|, (2.1)

where J ∈ R is a constant and 〈x, y〉 stands for nearest neighbor vertices.
Note that the Hamiltonian is invariant under the spin-translation/height-shift

t : (tω)i = ωi + t. This suggests reducing the complexity of the configuration space
by considering it gradient configurations instead of height configurations as will be
explained in the following:

Gradient configuration . We may induce an orientation on Γk relative to an arbitrary
site ρ (which we may call the root) by calling an edge 〈x, y〉 oriented iff it points away
from the ρ. More precisely, the set of oriented edges is defined by

�L := �Lρ := {〈x, y〉 ∈ L : d(ρ, y) = d(ρ, x) + 1}.

Note that the oriented graph (V , �L) also possesses all tree-properties, namely connect-
edness and absence of loops.

For any height configuration ω = (ω(x))x∈V ∈ ZV and b = 〈x, y〉 ∈ �L the height dif-
ference along the edge b is given by ∇ωb = ωy − ωx and we also call ∇ω the gradient field

of ω. The gradient spin variables are now defined by η〈x,y〉 = ωy − ωx for each 〈x, y〉 ∈ �L.

Let us denote the space of gradient configuration by Ω∇ = Z
�L. Note that in contrast to

the notation used in [12] for the lattice Zd, the gradient configurations defined above
are indexed by the oriented edges of the tree and not by its vertices. Equip the inte-
gers Z with the power set as measurable structure. Having done this, the measurable
structure on the space Ω∇ is given by the product σ-algebra F∇ := σ({∇b|b ∈ �L}).
Clearly ∇ :(Ω,F)→ (Ω∇,F∇) then becomes a measurable map.

3. Gradient Gibbs measures and tree-automorphism invariant solutions

3.1. Gibbs and gradient Gibbs measures

Recall that the set of height configurations Ω :=ZV was endowed with the product σ-
algebra ⊗i∈V 2

Z , where 2Z denotes the power set of Z. Then, for any Λ ⊂ V , consider
the coordinate projection map σΛ :Z

V → ZΛ and the σ-algebra FΛ :=σ(σλ) of cylinder
sets on ZV generated by the map σΛ.
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We define Gibbs measures on the space of height-configurations for the model (2.1)
on a Cayley tree. Let ν = {ν(i) > 0, i ∈ Z} be σ-finite positive fixed a priori measure,
which in the following we will always assume to be the counting measure.

Gibbs measures are built within the DLR framework by describing conditional prob-
abilities w.r.t. the outside of finite sets, where a boundary condition is frozen. One
introduces a so-called Gibbsian specification γ so that any Gibbs measure μ ∈ G(γ)
specified by γ verifies

μ(A|FΛc) = γΛ(A|·) μ− a.s (3.1)

for all Λ ∈ S and A ∈ F . The Gibbsian specification associated to a potential Φ is given
at any inverse temperature β > 0, for any boundary condition ω ∈ Ω as

γΛ(A|ω) = 1

Zβ,Φ
Λ

∫
e−βHΦ

Λ (σΛωΛc)1A(σΛωΛc)ν⊗Λ(dσΛ), (3.2)

where the partition function Zβ,Φ
Λ -that has to be non-null and convergent in this count-

able infinite state-space context (this means that Φ is ν-admissible in the terminology
of [8])-is the standard normalization whose logarithm is often related to pressure or free
energy.

In our SOS-model on the Cayley tree, Φ is the unbounded nearest-neighbour poten-
tial with Φ{x,y}(ωx − ωy) = |ωx − ωy| and Φx ≡ 0, so γ is a Markov specification in the
sense that

γΛ(ωΛ = ζ|·) is F∂Λ −measurable for all Λ ⊂ V and ζ ∈ ZΛ. (3.3)

In order to build up gradient specifications from the Gibbsian specifications defined
in [6], we need to consider the following: due to the absence of loops in trees, for any
finite subgraph Λ/Z, the complement Λc is not connected, but consists of at least two
connected components where each of these contains at least one element of ∂Λ. This
means that the gradient field outside Λ does not contain any information on the relative
height of the boundary ∂Λ (which is to be understood as an element of Z∂Λ\Z). More
precisely, let cc(Λc) denote the number of connected components in Λc and note that
2 � cc(Λc) � |∂Λ|.

Applying the general definition of gradient Gibbs measure (see [6]) we have

ZΛc

/Z = Z{b∈�L}|b⊂Λc × (Zcc(Λc)/Z ⊂ Z{b∈�L}|b⊂Λc × (Z∂Λ/Z) (3.4)

where ‘=’ is in the sense of isomorphy between measurable spaces. For any η ∈ Ω∇ =
ZV /Z, let [η]∂Λ/Z denote the image of η under the coordinate projection ZV /Z → Z∂Λ/Z
with the latter set endowed with the final σ-algebra generated by the coset projection.
Set

F∇
Λ :=σ((ηb)b⊂Λc) ⊂ T ∇

Λ :=σ((ηb)b⊂Λc, [η]∂Λ). (3.5)

Then T ∇
Λ contains all information on the gradient spin variables outside Λ and also

information on the relative height of the boundary ∂Λ. By (3.4) we have that for any

https://doi.org/10.1088/1742-5468/abaecd 4

https://doi.org/10.1088/1742-5468/abaecd


J.S
tat.

M
ech.

(2020)
093102

Gradient Gibbs measures for the SOS model with integer spin values on a Cayley tree

event A ∈ F∇ the FΛc-measurable function γΛ(A|·) is also measurable with respect to
T ∇
Λ , but in general not with respect to F∇

Λ . These observations lead to the following:

Definition 3.1. The gradient Gibbs specification is defined as the family of probability
kernels (γ ′

Λ)Λ⊂⊂V from (Ω∇, T ∇
Λ ) to (Ω∇,F∇) such that∫

F (ρ)γ ′
Λ(dρ|ζ) =

∫
F (∇ϕ)γΛ(dϕ|ω) (3.6)

for all bounded F∇-measurable functions F , where ω ∈ Ω is any height-configuration
with ∇ω = ζ.

Using the sigma-algebra T ∇
Λ , this is now a proper and consistent family of probability

kernels, i.e.

γ ′
Λ(A|ζ) = 1A(ζ) (3.7)

for every A ∈ T ∇
Λ and γ ′

Δγ
′
Λ = γ ′

Δ for any finite volumes Λ,Δ ⊂ V with Λ ⊂ Δ. The proof
is similar to the situation of regular (local) Gibbs specifications ([8], proposition 2.5).

Let Cb(Ω∇) be the set of bounded functions on Ω∇. Gradient Gibbs measures will
now be defined in the usual way by having their conditional probabilities outside finite
regions prescribed by the gradient Gibbs specification:

Definition 3.2. A measure ν ∈ M1(Ω
∇) is called a gradient Gibbs measure (GGM) if

it satisfies the DLR equation∫
ν(dζ)F (ζ) =

∫
ν(dζ)

∫
γ ′
Λ(dζ̃|ζ)F (ζ̃) (3.8)

for every finite Λ ⊂ V and for all F ∈ Cb(Ω∇). The set of gradient Gibbs measures will
be denoted by G∇(γ).

3.2. Translation-invariant gradient Gibbs measures

In this subsection we construct gradient Gibbs measures for period 4 height-periodic
boundary laws on the Cayley tree of order k � 2.

Proposition 4. ([6]). Probability distributions μ(n)(σn), n = 1, 2, . . . , in (3.2) are com-
patible iff for any x ∈ V \{x0} the following equation holds:

h∗
x =

∑
y∈S(x)

F (h∗
y, θ). (4.1)

Here, θ = exp(Jβ), h∗
x = (hi,x − h0,x + ln ν(i)

ν(0)
, i ∈ Z0) and the function F(·, θ) :R∞ →

R∞ is F (h, θ) = (Fi(h, θ), i ∈ Z0), with

Fi(h, θ) = ln
ν(i)

ν(0)
+ ln

θ|i| +
∑
j∈Z0

θ|i−j| exp(hj)

1 +
∑
j∈Z0

θ|j| exp(hj)
,

https://doi.org/10.1088/1742-5468/abaecd 5
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h = (hi, i ∈ Z0).

Assume hx = h = (hi, i ∈ Z0) for any x ∈ V. In this case we obtain from (4.1):

zi =
ν(i)

ν(0)

⎛
⎜⎝
θ|i| +

∑
j∈Z0

θ|i−j|zj

1 +
∑
j∈Z0

θ|j|zj

⎞
⎟⎠

k

, (4.2)

where zi = exp(hi), i ∈ Z0.
Let z(θ) = (zi = zi(θ), i ∈ Z0) be a solution to (4.2). Denote

li ≡ li(θ) =
−1∑

j=−∞
θ|i−j|zj , ri ≡ ri(θ) =

∞∑
j=1

θ|i−j|zj , i ∈ Z0.

It is clear that each li and ri can be a finite positive number or +∞. We shall consider
all possible cases.

Clearly, a solution z = (zi, i ∈ Z0) to (4.2) defines a tree-indexed Markov chain iff
r0 + l0 < +∞ (see [6]).

Let ν(i) = 1 for any i ∈ Z then we consider the solutions of (4.2) with l0 < +∞ and
r0 < +∞.

Put ui = u0
k
√
zi for some u0 > 0. Then (4.2) can be written as

ui = C

(
+∞∑
j=1

θjuk
i−j + uk

i +
+∞∑
j=1

θjuk
i+j

)
, i ∈ Z. (4.3)

Proposition 5. ([6]). A vector u = (ui, i ∈ Z), with u0 = 1, is a solution to (4.3) if and
only if for ui (= k

√
zi) the following holds

uk
i =

ui−1 + ui+1 − τui

u−1 + u1 − τ
, i ∈ Z, (5.1)

where τ = θ−1 + θ.

By this lemma we have

1 + l0 + r0 =
θ − θ−1

u−1 + u1 − τ
. (5.2)

Equations of system (4.2) for i = −1 and i = 1 are satisfied independently on values
of u−1 and u1 and the equation (5.1) can be separated to the following independent
recurrent equations

u−i−1 = (u−1 + u1 − τ)uk
−i + τu−i − u−i+1, (5.3)

ui+1 = (u−1 + u1 − τ)uk
i + τui − ui−1, (5.4)

where i � 1, u0 = 1 and u−1, u1 are some initial numbers (see again [6]).
So, if ui is a solution to (5.4) then u−i will be a solution for (5.3). Hence we can

consider only equation (5.4).

https://doi.org/10.1088/1742-5468/abaecd 6
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Let us consider the periodic solutions of (5.1) i.e., we describe solutions of (5.1)
which have the form

un =

⎧⎪⎪⎨
⎪⎪⎩
1, if n = 2m,

a, if n = 4m− 1, m ∈ Z

b, if n = 4m+ 1,

(5.5)

where a and b some positive numbers. In this case (5.4) is equivalent to the following
system of equations

(a+ b− τ)bk + τb− 2 = 0
(a+ b− τ)ak + τa− 2 = 0.

(5.6)

We describe positive solutions of (5.6)
Case a �= b. We multiply the first equation of (5.6) by ak and the second equation

of (5.6) by bk. And after that, subtract the first equation from the second and we obtain
the following equation:

τab(ak−1 − bk−1)− 2(ak − bk) = 0

Dividing both sides by a− b we get

(ak−1 + ak−2b+ · · ·+ a2bk−3 + abk−2)(τb− 2)− 2bk−1 = 0.

Put x := a
b
, then the last equation can be written as

(xk−1 + xk−2 + · · ·+ x2 + x)(τb− 2)− 2 = 0.

If τb− 2 � 0 then (xk−1 + xk−2 + · · ·+ x2 + x)(τb− 2)− 2 < 0, i.e., there is not any
solution (a, b) of (5.6) such that a �= b.

Let τb− 2 > 0 then for any positive fixed b we consider the following polyno-
mial Pb(x) := (xk−1 + xk−2 + · · ·+ x2 + x)(τb− 2)− 2. For x > 0 it is easy to check that
P ′

b(x) > 0 and Pb(0) < 0, lim
x→∞

Pb(x) > 0. Thus, Pb(x) has exactly one positive solution.

If τβ = 2 + 2
k−1

then there is not any solution (a, b) to (5.6) such that a �= b. In other
cases, from Pb(1) �= 0 for any positive b there exists a unique a(b) �= b such that (a, b)
is solution to (5.6).

Case a = b. In this case it is sufficient to consider one of equations of (5.6), i.e.,

2ak+1 − τak + τa− 2 = 0.

Last equation has the solution a = 1 independently on the parameters (τ , k). Dividing
both sides by a− 1 we get

Q(a) := 2ak + (2− τ)(ak−1 + ak−2 + · · ·+ a) + 2 = 0 (5.7)

By definition of τ we get τ � 2 i.e., From 2− τ < 0 and Descartes’ rule of signs, Q(a)
has at most two positive roots. Since Q′(a) = 2kak−1 + (2− τ)((k− 1)ak−2 + · · ·+ 2a+
1) and Q′(0) < 0, Q′(∞) > 0 there is a unique ac such that Q′(ac) = 0. Consequently,
if τ c :=Q(ac) < 0 then the polynomial Q(a) has exactly two positive solutions. Let

https://doi.org/10.1088/1742-5468/abaecd 7
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Q(ac) = 0 then Q(a) has exactly one positive solution. Finally, if Q(ac) > 0 then the
polynomial Q(a) has not any positive solution.

Theorem 5.1. (theorem 4.1, remark 4.2 in[4]). Let l be any spatially homogenous period-
q height-periodic boundary law to a tree-automorphism invariant gradient interaction
potential on the Cayley tree. Let Λ ⊂ V be any finite connected set and let ω ∈ Λ be any
vertex. Then the measure ν with marginals given by

ν(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ

⎛
⎝∑

s∈Zq

∏
y∈∂Λ

l

⎛
⎝s+

∑
b∈Γ(ω,y)

ζb

⎞
⎠
⎞
⎠ ∏

b∩Λ�=∅

Q(ζb), (5.8)

From above results and theorem 5.1 we can conclude the following theorems:

Theorem 5.2. Let k � 2 and a = b. For the SOS-model (2.1) on the k-regular tree, with
parameter τ = 2cosh(β) there numbers τ c > 0 such that the following assertions hold:

(a) If τ < τc then there is a unique GGM corresponding to nontrivial period-3 height-
periodic boundary laws of the type (5.5) via theorem (5.8).

(b) At τ = τ c there are exactly two GGMs corresponding to a nontrivial period-3 height-
periodic boundary law of the type (5.5) via theorem.

(c) For τ > τc there are exactly three such (resp. one) gradient GMs.

Theorem 5.3. Let k � 2 and a �= b. For the SOS-model (2.1) on the k-regular tree, with
parameter τ = 2cosh(β) the following assertions hold:

(a) For any positive fixed b, if τ � 2
b
then there is no any GGM corresponding to

nontrivial period-3 height-periodic boundary laws of the type (5.5) via theorem (5.8).

(b) For any positive fixed b, if τ > 2
b
then there is a unique GGM corresponding to

nontrivial period-3 height-periodic boundary laws of the type (5.5) via theorem (5.8).
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