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INTRODUCTION

The algebraic classification (up to isomorphism) of algebras of dimension n from a certain variety defined
by a certain family of polinomial identities is a classic problem in the theory of non-associative algebras.
There are many results related to the algebraic classification of small-dimensional algebras in the varieties
of Jordan, Lie, Leibniz, Zinbiel and many other algebras [ 1,/11,/14,17-19,23,27,29-31,35,40,43]]. Another
interesting direction in the classification of algebras is the geometric classification. There are many results
related to the geometric classification of Jordan, Lie, Leibniz, Zinbiel and many other algebras [[7,(10,(12,24~
26,30-33,,36,38-42,46,49]. An algebraic classification of complex 3-dimensional left symmetric algebras
is given in [4]. In the present paper, we give the algebraic and geometric classification of 4-dimensional
nilpotent left symmetric algebras.

Left-symmetric algebras (or under other names like KoszulVinberg algebras, quasi-associative algebras,
pre-Lie algebras, and so on) are a class of nonassociative algebras coming from the study of several top-
ics in geometry and algebra, such as rooted tree algebras [13]], convex homogeneous cones [48], affine
manifolds and affine structures on Lie groups [44], deformation of associative algebras [22]], and so on.
They are Lie-admissible algebras (in the sense that the commutators define Lie algebra structures) whose
left multiplication operators form a Lie algebra. It contains associative algebras, Novikov algebras and
assosymmetric algebras as subvarieties. The variety of left symmetric algebras is defined by the following
identity:

(xy)z —x(yz) = (yz)z —y(zz).

Furthermore, left-symmetric algebras are a kind of natural algebraic systems appearing in many fields in
mathematics and mathematical physics. Perhaps this is one of the most attractive and interesting places.
As it was pointed out in a paper of Chapoton and Livernet [[15]], the left-symmetric algebra deserves more
attention than it has been given. For example, left-symmetric algebras appear as an underlying structure
of those Lie algebras that possess a phase space, thus they form a natural category from the point of view
of classical and quantum mechanics [45]; they are the underlying algebraic structures of vertex algebras
[S]; there is a correspondence between left-symmetric algebras and complex product structures on Lie
algebras [3], which plays an important role in the theory of hypercomplex and hypersymplectic manifolds;

! The work was supported by CNPq 302980/2019-9, FAPESP 2019/03655-4, RFBR 20-01-00030.
1



2

left-symmetric algebras have close relations with certain integrable systems [8]], classical and quantum
YangBaxter equation [20]]; Poisson brackets and infinite-dimensional Lie algebras [6L21], operads [15],
quantum field theory [16], and so on (see [9] and the references therein).

Our method for classifying nilpotent left symmetric algebras is based on the calculation of central ex-
tensions of nilpotent algebras of smaller dimensions from the same variety. The algebraic study of cen-
tral extensions of Lie and non-Lie algebras has been an important topic for years [2}28,47,50]. First,
Skjelbred and Sund used central extensions of Lie algebras to obtain a classification of nilpotent Lie alge-
bras [47]. After that, using the method described by Skjelbred and Sund, all non-Lie central extensions of
all 4-dimensional Malcev algebras were described [28], and also all non-associative central extensions of
3-dimensional Jordan algebras. Note that the Skjelbred-Sund method of central extensions is an important
tool in the classification of nilpotent algebras, which was used to describe all 4-dimensional nilpotent asso-
ciative algebras [19], all 4-dimensional nilpotent bicommutative algebras [37], all 5-dimensional nilpotent
Jordan algebras [27], all 5-dimensional nilpotent restricted Lie algebras [17], all 6-dimensional nilpotent
Lie algebras [14}/18], all 6-dimensional nilpotent Malcev algebras [29] and some others.

1. THE ALGEBRAIC CLASSIFICATION OF NILPOTENT LEFT SYMMETRIC ALGEBRAS

1.1. Method of classification of nilpotent algebras. Throughout this paper, we use the notations and
methods well written in [28]], which we have adapted for the left symmetric case with some modifications.
Further in this section we give some important definitions.

Let (A, -) be a left symmetric algebra over C and V a vector space over C. The C-linear space Z? (A, V)
is defined as the set of all bilinear maps #: A x A — V such that

These elements will be called cocycles. For a linear map f from A to V, if we definedf: A x A — V
by 6f(z,y) = f(xy), then §f € Z*(A,V). We define B2 (A, V) = {§ =6f : f € Hom (A, V)}. We
define the second cohomology space H? (A, V) as the quotient space Z* (A, V) /B? (A, V).

Let Aut(A) be the automorphism group of A and let ¢ € Aut(A). For § € Z* (A, V) define the action
of the group Aut(A) on Z? (A, V) by ¢0(z,y) = 0 (¢ (z),d(y)). It is easy to verify that B* (A, V) is
invariant under the action of Aut(A). So, we have an induced action of Aut(A) on H? (A, V).

Let A be a left symmetric algebra of dimension m over C and V be a C-vector space of dimension
k. For the bilinear map 6, define on the linear space Ay = A @ V the bilinear product “ [—, —] A, DY
[+ 2",y + Y], = 2y +0(z,y) forall z,y € A,2’,y" € V. The algebra Ay is called a k-dimensional
central extension of A by V. One can easily check that Ay is a left symmetric algebra if and only if
0 eZ*(AV).

Call the set Ann(f) = {z € A:0(xz,A)+ 0 (A,x) = 0} the annihilator of §. We recall that the an-
nihilator of an algebra A is defined as the ideal Ann(A) = {z € A:2A + Az =0}. Observe that
Ann (Ay) = (Ann(d) N Ann(A)) @ V.

The following result shows that every algebra with a non-zero annihilator is a central extension of a
smaller-dimensional algebra.

Lemma 1. Let A be an n-dimensional left symmetric algebra such that dim(Ann(A)) = m # 0. Then
there exists, up to isomorphism, a unique (n — m)-dimensional left symmetric algebra A’ and a bilinear
map 0 € 7Z*(A', V) with Ann(A’) N Ann(6) = 0, where V is a vector space of dimension m, such that
A=A'ypand A/ Ann(A) = A

Proof. Let A’ be a linear complement of Ann(A) in A. Define a linear map P: A — A’'by P(x+v) =z
forx € A’ and v € Ann(A), and define a multiplication on A’ by [z,y|ar = P(zy) for z,y € A’. For
x,y € A, we have

P(zy) = P((z — P(x) + P(x))(y — P(y) + P(y))) = P(P(2)P(y)) = [P(x), P(y)]a
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Since P is a homomorphism P(A) = A’ is a left symmetric algebra and A/ Ann(A) = A’, which gives
us the uniqueness. Now, define the map 6: A’ x A’ — Ann(A) by 0(z,y) = zy — [z, y]as. Thus, A} is
A and therefore 6 € Z?(A’, V) and Ann(A’) N Ann(f) = 0. O

Definition 2. Let A be an algebra and I be a subspace of Ann(A). If A = Ay @ I then I is called an
annihilator component of A. A central extension of an algebra A without annihilator component is called
a non-split central extension.

Our task is to find all central extensions of an algebra A by a space V. In order to solve the isomorphism
problem we need to study the action of Aut(A) on H? (A, V). To do that, let us fix a basis ey, ..., e, of

V, and § € Z? (A, V). Then 6 can be uniquely written as 6 (z,y) = Z 0; (x,y) e;, where 0; € Z* (A, C).

i=1
Moreover, Ann(6) = Ann(6;) N Ann(6;) N ... N Ann(f,). Furthermore, § € B? (A, V) if and only if all
0; € B2 (A,C). It is not difficult to prove (see [28, Lemma 13]) that given a left symmetric algebra Ay,

if we write as above 0 (z,y) = Z 0; (z,y)e; € Z*(A,V) and Ann(f) N Ann (A) = 0, then Ay has an
i=1
annihilator component if and only if [6;] , [fs] , . . ., [0,] are linearly dependent in H? (A, C).
Let V be a finite-dimensional vector space over C. The Grassmannian Gy, (V) is the set of all k-

dimensional linear subspaces of V. Let G, (H? (A,C)) be the Grassmannian of subspaces of dimen-
sion s in H? (A, C). There is a natural action of Aut(A) on G, (H? (A,C)). Let ¢ € Aut(A). For

W = {[01],[02],...,[0s]) € Gs (H? (A, C)) define oW = {[¢01], [p0s] , . .., [¢0;]). We denote the orbit of
W € G, (H? (A, C)) under the action of Aut(A) by Orb(WW). Given
Wl = <[91] ) [92] [ [95]> ) W2 = <[191] ) [792] LA [793]> € Gs (H2 (A7C)) )

we easily have that if W, = W5, then (] Ann(6;) N Ann (A) = () Ann(¥;) N Ann(A), and therefore we
i=1 i=1
can introduce the set

T,(A) = {W = ([04],[05],....[0,)) € G, (H? (A, Q)) ﬂAnn )N Ann(A) = 0},
which is stable under the action of Aut(A).

Now, let V be an s-dimensional linear space and let us denote by E (A, V) the set of all non-split s-
dimensional central extensions of A by V. By above, we can write

=1

E(AV) = {Ag 0 (x Ze z,y)e; and ([01],[6s],...,[0.]) GTS(A)}.

We also have the following result, which can be proved as in [28, Lemma 17].

Lemma 3. Let Ay, Ay € E (A, V). Suppose that 0 (x,y) Z@ x,y)e; and ¥ (x,y) 219 z,y)e

Then the left symmetric algebras Ay and Ay are isomorphic lf and only if
Orb <[01] ) [92] ) [95]> = Orb <[Q91] ) [192] PR [195]> :

This shows that there exists a one-to-one correspondence between the set of Aut(A)-orbits on T (A)
and the set of isomorphism classes of E (A, V). Consequently we have a procedure that allows us, given
a left symmetric algebra A’ of dimension n — s, to construct all non-split central extensions of A’. This
procedure is:

(1) For a given left symmetric algebra A’ of dimension n — s, determine H*(A’,C), Ann(A’) and
Aut(A).
(2) Determine the set of Aut(A’)-orbits on Ts(A’).



(3) For each orbit, construct the left symmetric algebra associated with a representative of it.

The above described method gives all (Novikov and non-Novikov) left symmetric algebras. But we are
interested in developing this method in such a way that it only gives non-Novikov left symmetric algebras,
because the classification of all Novikov algebras is given in [34]. Clearly, any central extension of a non-
Novikov left symmetric algebra is non-Novikov. But a Novikov algebra may have extensions which are not
Novikov algebras. More precisely, let N be a Novikov algebra and 6 € Z2 (N, C). Then Ny is a Novikov
algebra if and only if

O(zy, z) = 0(xz,y).
for all ,y, 2 € N. Define the subspace Z% (N, C) of ZZ (N, C) by

Z4i(N,C)={ 0 € Z}(N,C) : O(zy, z) = O(xz,y) forall z,y,z € N }.

Observe that B*(N, C) C Z(N, C). Let H{ (N, C) = Z%(N, C) /B*(N, C). Then H% (N, C) is a subspace
of H? (N, C). Define

R,(N) = {WeT,N): W e G,H}N,C))},
U,(N) = {WeT,N): W ¢ G,(HX{(N,C))}.

Then T5(N) = Rs(N) U U4(N). The sets R4(IN) and U, (IN) are stable under the action of Aut(IN). Thus,
the left symmetric algebras corresponding to the representatives of Aut(IN)-orbits on R, (IN) are Novikov
algebras, while those corresponding to the representatives of Aut(IN)-orbits on Ug(N) are not Novikov
algebras. Hence, we may construct all non-split non-Novikov left symmetric algebras A of dimension n
with s-dimensional annihilator from a given left symmetric algebra A’ of dimension n — s in the following
way:
(1) If A’ is non-Novikov, then apply the Procedure.
(2) Otherwise, do the following:
(a) Determine U (A’) and Aut(A’).
(b) Determine the set of Aut(A’)-orbits on Ug(A').
(c) For each orbit, construct the left symmetric algebra corresponding to one of its representatives.

1.2. Notations. Let us introduce the following notations. Let A be a nilpotent algebra with a basis
ey, ez, ..., e, Thenby A;; we will denote the bilinear form A;; : A x A — C with A;(e;, €,,) = 810
The set {A;; : 1 <4,7 < n} is a basis for the linear space of bilinear forms on A, so every § € Z*(A,V)

can be uniquely written as 6 = Z cijA;;, where ¢;; € C. Let us fix the following notations:
1<i,j<n
Li — jthi-dimensional left symmetric (non-Novikov) algebra.
L;" — jthi-dimensional left symmetric (Novikov) algebra.

1.3. The algebraic classification of 3-dimensional nilpotent left symmetric algebras. There are no non-
trivial 1-dimensional nilpotent left symmetric algebras. There is only one nontrivial 2-dimensional nilpotent
left symmetric algebra (it is the non-split central extension of 1-dimensional algebra with zero product):

L%’{ D oe1e] = es.
It is known the classification of all non-split 3-dimensional nilpotent left symmetric algebras:

ng i €161 = €3 €262 = €3

ng : €162 = €3 €261 = —€3

Lgfx()\) Doeler = Aeg ege; = €3 €9€9 = €3
Lg; I €€ = €2 €261 = €3

ng()\) Po€161 = €2 €162 = €3 ese1 = Aes.

1.4. Central extensions of 3-dimensional nilpotent left symmetric algebras.



1.4.1. The description of second cohomology spaces of 3-dimensional nilpotent left symmetric algebras.
In the following table we give the description of the second cohomology space of 3-dimensional nilpotent
left symmetric algebras.

A M (A) M (A)

L; ([An],[Aws), [821], [Asi), [As]) HR (L) & {[Ans])

LY [Asa], [A21], [Azs]) HA(L5) @ ([Aal, [Aso] )

L3 [Av], [Ax], [A22]> HE (Lgs) © <[A31 —2A13), [Age — 2A23]>
L3 (Maso | ([Au), [A], [An]) HA(L(V)e

<[A13 — Agp — Agal, [Ags + )\A31]>

L [Ar2], [A1z — A31]> Hy (Lis) @ <[A22 + A, [A23}>

(
(
L3:(0) | ([An], [, [Aa], [Ars — Ag — Agl, [Azs] ) | BA(LE(0))
(
(

Lis(n) | (182,12 = Vs + A(Aa + An)) HA (L8 (V) & (1822 + Aug — Aat])

Remark 4. Since Hi (L35(0)) = HZ(L35(0)), then central extension of the algebra L;(0) give us only
Novikov algebras.

1.4.2. Central extensions of L3;. Let us use the following notations:
Vi=[Ap], Vo=[Ay], Vs=[Axn], Vi=[As], V5;=[Ag], V=I[Ax]

6
Take 0 = > o;V; € H2 (L3}). The automorphism group of L3! consists of invertible matrices of the form
=1

z 0 O
b=y 2° wu
z 0 t
Since
0 o s ot o] oy
' las 0 ag|loé=1as 0 of,
ag 0 ap ay 0 of

6 6
we have that the action of Aut(L3}) on the subspace (3 «;V;) is given by (3>~ a}V,), where
i i=1

=1
af = aprd ay = oqzu+ aert + aszt + agyt
ay = P +agr?z ol = azru+ aurt + aszt + agzu
ai = ast® + agtu af = agrit.

Since H? (L31) = H(LY) @ (V) and we are interested only in new algebras, we have ag # 0. Then

and y = (azastaras—asas)x

__asx __ast
2
Qg

putting z = e u=—2

, we have
3 (aga6—asas)rt

* 2
o g = Xt .

ko * * * ko
oy =a5=0; =0 of =z’ o) =
Consider the following cases.

(1) a1 # 0, aya6 — azas # 0, then choosing x = @605 f — al(o“”‘;‘;"””, we have the represen-
6

6
tative <V1 + V4 + V6>
(2) a1 =0, aya — azas # 0, then choosing x = *4%6-73%5 we have the representative (V4 + V).
6

(3) ay # 0, agas — azas = 0, then choosing ¢t = <2 we have the representative (V; + V).

e

(4) a1 =0, aga6 — azas = 0, then we have the representative (V).



Hence, we have the following distints orbits
(Vi+Vi+Ve) (Va+Vs) (Vi+Vs) (Ve),

which give the following new algebras:

Lél . €11 — ey €16 — €4 €263 — €4 €31 — €4
Ly, : ei1ep =ey ege3=ec4 €361 =¢y

L%?) . €11 = €9 €1y = €4 €93 = €4

Lg4 . €161 = €9 €23 = €4

1.4.3. Central extensions of L35, Let us use the following notations:
V1 = [A12]7 v2 - [A21]7 v3 = [A22]7 v4 = [ASI]a VS = [A32]-

5
Take 0 = > o, V; € H;(L35). The automorphism group of L3} consists of invertible matrices of the

form =
T -y 0 x oy 0
=1y = 0 or ¢po= 1y —=x 0
2t 2?+q? z ot 2?4y
Since
0 a1 O o o 0
(b? Qg (O3 0 (bl = Oé; o + Oé§ 0 s
ay a5 0 oy ag 0

we have that the action of Aut(L35)™ (it is the subgroup in Aut(L3}) formed by all automorphisms of the

5 5
first type)on the subspace (> «;V;) is given by (> afV;), where
=1 i=1

;= ar? — ay? + azry — auyz + azrz

af = —aqy? + apr? + azry + auat + asyt

af = —2aixy — 2007y + az(x® — y?) — ay(zz + yt) — as(yz — xt)
ap = (our+asy) (a? +y?)

o = (—ouy+azz) (22 +4?).

Since H% (L35) = H(L3;) @ (V4, Vs) and we are interested only in new algebras, we have (ay, a5) #
(0,0). Moreover, without loss of generality, one can assume a4 # 0. Then we have the following cases.

2 2 2 2
2 2 : _ zos (v10f—azai—azaqas)z (as(al—a?)—2a05(a1+az))z
(1) aj + o # 0, then choosing y = T t= ca(aiTal) , &= oa(al+ad) , We
have
2 2 2 3(n2 2)\2
% * * % (a1af—azap+azagas)e * z®(aj+az)
ay=a3=a; =0 a] = o2 ap = —— g

(@) if apa? — ana? + azagas = 0, then we have the representative (V4);
a4(a1a§7a2a§+a3a4o<5)

(b) if a2 — 04204% + azayas # 0, then choosing x = , we have the represen-

(af+a3)?
tative (V1 + Vy);
(2) a3+ a2 =0, i.e., a5 = tiay, then choosing
L a1y? — pr? — asay L —2a12y — 2091y + az(2? — y?) + au(—y +ix)
N ay(x £ iy) T ag(x £ iy) ’
we have

4+ 2 2\2
a;:a;:o, OéT:—(al—i_OQ ZOCB)(I. +y> 5
CETE

i = (@ +9?) (et iy)ou, af =Fi (¥ +9°) (r £ iy) .




(a) a1 + ag +iag = 0, then we have representative (V, £ iV5).
(b) ay + as & iag # 0, then choosing © = —%ﬂim and y = 0, we have representative
(V14 V,£iV5).
Since the automorphism ¢ = diag(1, —1, 1) acts as

¢(V4 + ZV5) = <V4 — ZV5> and ¢(V1 + V4 + ZV5) == <V1 + V4 — iV5>,

we have two representatives of distinct orbits (V4 + iV5) and (V; + V4 +iV5).
Hence, we have the following distints orbits

(Vy) (Vi+Vy) (Vi+iVs) (Vi+V4+iVs),

which give the following new algebras:

Lis : eiep =e3 exeg =e3 e36 =¢y

Ljs : e161 =e€3 c169=¢€4 €369 =e€3 €361 = ¢4

Lgr? . €161 = €3 €9y = €3 €361 — €4 €369 = i64

ng . €11 — €3 €1y — €4 €€y — €3 €361 — €4 €3€9 = i64

1.4.4. Central extensions of LY. Let us use the following notations:
v1 = [All]a V2 = [A21}7 V3 = [A22]7 v4 = [A31 - 2A13]7 v5 = [A32 - 2A23]'

5
Take 6 = > o;V; € H2 (L33). The automorphism group of L3} consists of invertible matrices of the form
=1

T u 0
o=y v 0
z t xv—yu
Since
a; 0 —20y o o —2aj
T lay as 205 | d=as—a" af —2ai],
ay as 0 o o 0

5 5
we have that the action of Aut(L33;) on the subspace (Y o;V;) is given by (3>~ a}V,), where
=1

)
i=1

(2

af = ar? + aery + azy? — aurz — asyz
ay = 2a12u+ aa(rv + yu) + 203yv — au(at + zu) — as(yt + zv)
o = apu? + auo + azv? — auut — azot
a; = (oyz+ asy) (zv —yu)
aif = (auu+ azv) (zv — yu).
Since Hi (L3%) = H (L) & (V4, V), we have (ay, a5) # (0,0). Moreover, without loss of generality,
one can assume ay # 0. Choosing u = —%2%, =z = %W and t = QQIMMSSiZZ)HO‘Sy”, we

obtain ) - )
P R * (&1@5 — Qia0iy iy + 043044)1} * U(O&4J,‘ + a5y)
o =as=0a: =0, o= , 0y =

ol ay

Then we have the following cases.

(1) a2 — asaas + aza? = 0, then we have the representative (V).
as(aztasy)?
(a1 —aposastazal)

(2) apa? — asauas + asa? # 0, then choosing v =
(V3 +Vy).
Summarizing, we have the following distinct orbits

(Vi) (Vs +Vy).

, we have the representative



Hence, we have the following new algebras:

L%g . e = e3 e1ez = —264 €9€1 =— —€3 €361 = €4
Léllo . €1 = e3 e1e3 — —264 €9€1 — —€3 €9€69 — €4 €3€1 = €4

1.4.5. Central extensions of L¥;(\) 0. Let us use the following notations:
Vi=[Anl, Va=[An], Vi=[An], Vi=[Ai—Az—An], Vs=[Ay+ szl

Take 6 = Y «;V; € H (L3i(\)az0). The automorphism group of L¥;(\), consists of invertible matrices
=1

of the form
T Y 0
p=|-Ay z—y 0
2 t 2 —zy+ \y?
Since
0 o oy Ao o o
P o as az|o=| o +ab o +ai ofl,

—ay+Aas —ay 0 —ay +Aaf  —ap O

5 5
we have that the action of Aut(L3%()\)x.0) on the subspace (Y «;V;) is given by (3 o} V;), where
i=1 =1
af = ai(r? — zy) — ) \y® — az(Azy — My?) + au(at — z2) + as(A\yz — Ayt),
ay = ai(ry — M\y?) + awx? — azdzy + ag( Ayt — xt) + asAwt,
oy = a(2ry — ) + wry — ) + as((@ —y)* — A7)
+ay(yt — ot — yz) + as(A\yt + ot — yt — xz + yz),

af = (ur —as\y)(z? — 2y + \y?),
ay = (agy+as(z—y))(a? —zy + \y?).

Since Hi (L35 (M) az0) = HEA(LE(N)azo) @ (V4, Vs), we have (ay, 5) # (0,0). Then we have the
following cases.

(1) ay = 0, then a5 # 0 and choosing y = 0, t = —%’;7 z = (0‘32%2)”3, we have

ay=aj=a; =0, of =a2?, of =asr’.
(a) a; = 0, then we have the representative (V).
(b) oy # 0, then choosing = = 2, we have the representative (V + V5).
(2) ay # 0, and @F — g5 + 2N 7£ O then choosing z = AO‘5 and y = 1, we have o = 0 and it is the
situation considered above.
(3) a4 # 0and a? — ayas + a2\ = 0, then choosing

_ _ _agx _ (cag—daras+oasag)x
Y= 0 t= z= as(as—Aas) )

we have

(((14—)\a5)(a3a4—a1a5)—a2az)a:2 3

af =y of = Pas.

* *x *
oy = Gy = 0 Q3 = ag(as—Aas)

(@) e} = (s — o) (s — aqas), then we have the representative (V4 + S22V,

(b) awa? # (ay — Aas) (s — ajais), then we have the representative <2AV3 +V, + 1£ = 1 BAvs
Summarizing, we have the following distinct orbits
(Vs) (2AV4+ (1 = V1 —=4X)V5) (V3 +2AV,+ (1 — 1 —4))
1 —

A)Vs)
(Vi+Vs5) (2AVi+ (1+VI—4NVs) (Vs + 2V, + (1 + I —4))

Vs
Vs).



Hence, we have the following new algebras:

Lzll1<)\))\¢0 €161 = )\63 €g2€1 = €3 €9€9 = €3
€9€3 = €4 €361 = )\64
Lzll2<>\))\7g0 €1€61 = )\63 €1€2 = €4 €2€1 = €3
€2€9 = €3 €9€3 — €4 €361 = )\64
Li5(A)azo €161 = \e3 €969 = €3 egez = (1 — /1 —4\)ey eses = —2\ey
ese] = €3  e1e3 = 2)\ey ese; = —A(1+v1—4N)ey
L4114()\))\7£0 €161 = )\63 €9€9 = €3 + ey €9€3 = (1 - \/1 - 4)\)64 €3€9 = —2/\64
€21 = €3 €163 = 2)\ey eze; = =M1+ V1 —4N)ey
Li%()\))\;go €1€1 = )\63 €9€9 = €3 €9€3 = (]. + \/]. - 4)\)64 €3€9 = —2/\64
€2€1 = €3 €163 = 2)\64 €361 = —)\(1 — 1-— 4)\)64
L4116<>\))\;£0 €1ep = )\63 €969 = €3 + €4 €9€3 = (1 -+ \/1 — 4)\)64 €3y — —2/\64
€2€1 = €3 €163 = 2)\64 €361 = —)\(1 — 1-— 4)\)64
1.4.6. Central extensions of L3t. Let us use the following notations:
Vi=[Ap]l, Vi=[Ai—Aszn], Vi=[Apn+As|, Vi=[Ay]|
4
Take 6 = > o;V; € H2 (L3:). The automorphism group of L3! consists of invertible matrices of the form
i=1
r 0 O
dp=1y 22 0
2 xy
Since
0 a1 Qo a* o] a;
P 0 as oy | o= a** oy aj |,

—Qg + (3 0 0

—ai+ai 0 0

4 4
we have that the action of Aut(L3%) on the subspace (Y o;V;) is given by (>~ a}V,), where
= i=1

=1

af = a3 + (o + a3)2®y + agxy? o = aprt + aurdy

o = azat + ayrdy

af = ayx®.

Since H? (L3t) = HZ,(L3:) @ (V3, Vi), we have (ag, ay) # (0,0). Then we have the following cases.

(1) ay =0, then
(a) if ag + a3 # 0, then choosing y = —

1T
az+asz’

we have the representative («Vy + V3)az_1;

(b) if ay + a3 = 0, then we have the representatives (—V;, + V3) and (V; — V3 + V3) depending

on whether a; = 0 or not.
(2) if ay # 0, then choosing y = — %%, we have
. (oqay — agas)r?

o =
1
Oy ’

ay = (g — ag)x4,

5

* *
az; =0, oy =our’,

(a) if acyay — anaz = 0, ay — az = 0, then we have the representative (V,);
(b) if agay — a3 = 0, ag — a3 # 0, then we have the representative (Vy + Vy);
(c) if ayay — a3 # 0, then we have the representative (V; + aVay + V).

Hence, we have the following distints orbits
(aVy+V3) (Vi—Va+V3) (V)

which give the following new algebras:

(Vo +Vy)

<V1 + OéVQ + V4>,
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4 . _ _ _ _ _
Li;(a) : ele1 =€y eje3=ae, ese; =e3 exea =e4 eze; = (1l —a)ey
Lzllg . €161 = €9 €169 = €4 €163 — —€4 €9€1 — €3 €9€9 = €4 €361 — 264
7 : — — —
Ly Toe1e1 =€y €961 = €3 €93 = €4
7 ; — — — — —
L20 . €161 =— €9 €163 = €4 €2€1 = €3 €9€3 — €4 €3€1 = —€4
1 :
L3 (a) : eleg =€y ejea=e4 e1e3=qey €361 =€3 €363 =¢€4 €361 = —Q€y

1.4.7. Central extensions of L5 ()\). Let us use the following notations:

Vi=1[A%] Va=[(2—-NA13+ A9+ AAg1] Vi3 =[Ag+ A1z — Ag].

3
Take 0 = > o,;V; € Hi(L3%(\)). The automorphism group of L3%()\) consists of invertible matrices of

i=1
the form
T 0 0
o= 1y x? 0
z xy(l+ ) 23
Since
0 0 (2= Nag + as a™* a (2—Na; + af
o a Aag + as 0 o= |al +ra" Aaj+ o 0 ,
)\OZQ — Q3 0 0 )\Oé; - O./:ok) 0 0

3 3
we have that the action of Aut(L3%(\)) on the subspace (> ;V;) is given by (>~ afV;), where
i=1

i=1
af = a1z® + (A3 = A?) — az(A\2 + 3X)) 2%y af = awa?  of = azz’.

Since HZ (L3 ()\)) = H& (L35 (X)) @ (V3), we have a3 # 0. Then we have the following cases

(1) if X = 0, then we have the representatives (aVy+ V3) and (V1 +a Vs + V3) depending on whether
a1 = 0 or not.
(2) if A =1, then choosing y = ﬁ, we have the representative (aVy + V3).
(3) if A ¢ {0; 1}, then:
(@) if aa(A® — A?) — a3(\? + 3\) # 0 then choosing y = O TaN 0w sy We have the repre-
sentative (Vs + V3) A

(b) if (A3 — )\2) — az(A\? + 3)\) = 0 then we have the representative ( ’\/\+31)V2 + V3) and

(/\(A V1 + /\(/\ 1 A2V, + V3) depending on whether or; = 0 or not.

Thus, we have the following orbits:
<V1 + CYVQ + V3>)\:0 <C¥V2 + V3> <V1 + ()\ + 3)V2 + /\()\ — 1)V3>)\750;1.

Hence, we have the following new algebras:

L3, (a) © eje] = es e1es = e3 eres = (2a+ 1)ey
€9€1 = €4 €9€9 = €4 €31 — —¢€4
Li;(\, ) :oele] = eg e1ex = e3 ejes = ((2 - Na+ 1)64
ese1 = Aes eges = (Aa+1)eg  eze; = (Aa—1)ey
L§4()\))\¢{0;1} . e1ep = e €169 = €3 €1e3 = 2(3 - /\)64

ege] = Aes + e egea = 2A(A+ 1)eg eze; = 4hey
1.5. Classification theorem. Now we are ready summarize all results related to the algebraic classification of com-
plex 4-dimensional nilpotent left symmetric algebras.

Theorem A. Let L be a complex 4-dimensional nilpotent left symmetric algebra. Then L is a Novikov algebra or
isomorphic to one algebra from the following list:
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4 . — _ _ —
Lo, Toe1e1 = eg e1eg = ey ege3 = €4 es3e] = ey
LéQ . e1e1 = €9 €9€3 — €4 €361 — €4
Lé3 .o e1e1 = €9 €19 = €4 €9€3 = €4
1 . _ —
Ly, T ele; = ey ese3 = ey
4 . _ _ —
Lgs T ejep = e3 egey = €3 e3e] = ey
1 . _ — — —
L06 .o ejep = e3 €19 = €4 €9€9 — €3 €31 — €4
4 . _ — _ 4
LO7 . e1ep = e3 €9€9 = €3 €3€1 — €4 €3€9 = 1e4
1 . — _ _ _ i
Lgs . e1ep = e3 €169 = €4 €9€9 — €3 €3€1 = €4 €3€9 = €4
L09 . e1eg = €3 €e1e3 = —264 €9€1 = —e3 €31 = €e4
L41l0 . e1eg = €3 €1e3 = —264 €9€1 — —e3 €29 = €4 €361 — €e4
%0 : = = = = =
11( ))\7&0 © €1€1 = A€3 €261 = €3 €262 = €3 €2€3 = €4 €361 = A€y
4 . _ — —
L12(>\))\7g0 .oe1ep = )\63 €169 = €4 €9€1 — €3
€269 = €3 ege3 = €4 ese1 = Aey
4 . _ _ _ _
L13(/\))\750 Loejep = )\63 €9€9 = €3 €9€3 — (1 — \/1 — 4)\)64 €3€oy = —2)\64
ese] = e3 er1e3 = 2\ey ese; = — N1+ v1—4N)ey
Lzll4(/\))\7go Loe1er = )\63 €9€9 = €3 + eq €9€3 — (1 — \/1 — 4)\)64 €3€y = —2)\64
ese] = €3 e1es = 2\ey ese; = — A1+ v1—4N)ey
Li’%(/\))\?go Loerep = )\63 €9€9 = €3 €9€3 — (1 -+ \/1 — 4)\)64 €3€y = —2)\64
ese] = e3 er1es = 2\ey eze; = —AN1—+v1—4N\)ey
Lzllﬁ(/\))\?go T e1e1 = deg €962 = €3 + €4 eg€e3 = (1 + \/1 — 4)\)64 egeo = —2)ey
ese] = €3 eres = 2\ey eze; = —AN1—+v1—4N\)ey
1 . _ — — — —
Li- (@) T eje] = ey e1e3 = aeq ege1 = e3 €xe9 = €4 eze1 = (1 —a)ey
4 . _ — —
ng . e1e1 = €9 €19 = €4 €1€3 — —€4
€o2€e1 — €3 €9€9 — €4 €31 — 264
4 . _ — —
L : eje; = ey ese] = €3 ege3 = €4
4 . _ _ — — —
L5, : ele] = ey e1es = ey ese1] = e3 e9e3 = €4 ese] = —ey
4 . _ — —
L3, (a) : eje] = ey elex = ey e1e3 = aeq
€o2e1 = €3 €92€3 = €4 €361 — —Qeyq
L3, () T e1e] = ey e1es = €3 eres = (2a+ 1)ey
€2€] = €4 €262 = €4 €361 = —€4
4 . _ _ —
L3s(\, ) T eje; = es e1ey = €3 e1e3 = ((2 - Na+ 1)64
ese1 = Aes egea = (A +1)eg  eze; = (Aa—1)ey
4 . _ — —
Los(Magoy @ erer=e ereg = e3 ere3 = 2(3 — Ney

€ge] = )\63 +eq4 egep = 2)\()\ + 1)64 €3€1 = 4)\64

2. THE GEOMETRIC CLASSIFICATION OF NILPOTENT LEFT SYMMETRIC ALGEBRAS

2.1. Definitions and notation. Given an n-dimensional vector space V, the set Hom(V®@V, V) 2 V*@V* @ Visa
vector space of dimension n3. This space has the structure of the affine variety C"’. Indeed, let us fix a basis €l,...,€n

n
of V. Then any ;1 € Hom(V®V, V) is determined by n? structure constants ¢f; € C such that p(e; @ej) = Y ¢fjep.
k=1

A subset of Hom(V ® V, V) is Zariski-closed if it can be defined by a set of polynomial equations in the variables cfj
(1 <i,j,k<n).

Let T be a set of polynomial identities. The set of algebra structures on V satisfying polynomial identities from
T forms a Zariski-closed subset of the variety Hom(V ® V, V). We denote this subset by IL(T"). The general linear
group GL(V) acts on L(T") by conjugations:

(g*p)(z®y)=gulg 'z gy
forx,y € V, p € L(T) € Hom(V ® V,V) and g € GL(V). Thus, L(T) is decomposed into GL(V)-orbits that
correspond to the isomorphism classes of algebras. Let O(u) denote the orbit of 1 € IL(7") under the action of GL(V)
and O(u) denote the Zariski closure of O(p).

Let A and B be two n-dimensional algebras satisfying the identities from 7", and let p, A € L.(T") represent A and

B, respectively. We say that A degenerates to B and write A — B if A € O(u). Note that in this case we have
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O(A) C O(u). Hence, the definition of a degeneration does not depend on the choice of p and A. If A % B, then the
assertion A — B is called a proper degeneration. We write A /4 B if A & O(p).

Let A be represented by o € L(T"). Then A is rigid in L(T") if O(y) is an open subset of L(T"). Recall that a subset
of a variety is called irreducible if it cannot be represented as a union of two non-trivial closed subsets. A maximal
irreducible closed subset of a variety is called an irreducible component. It is well known that any affine variety can

be represented as a finite union of its irreducible components in a unique way. The algebra A is rigid in L(7") if and

only if O(u) is an irreducible component of (7).
Given the spaces U and W, we write simply U > W instead of dim U > dim W.

2.2. Method of the description of degenerations of algebras. In the present work we use the methods applied to
Lie algebras in [[10,25,[26,/46]]. First of all, if A — B and A 2 B, then Der(A) < Der(B), where Der(A) is the Lie
algebra of derivations of A. We compute the dimensions of algebras of derivations and check the assertion A — B
only for such A and B that Der(A) < Der(B).
To prove degenerations, we construct families of matrices parametrized by ¢. Namely, let A and B be two algebras
represented by the structures x4 and A from L(T") respectively. Let ey, . .., e, be a basis of V and cfj 1<1,73,k<n)
n

be the structure constants of \ in this basis. If there exist az (t)eC(1 <i,j<n,teC*suchthat B! = af (t)e;

Jj=1

(1 <€ 4 < n) form a basis of V for any ¢ € C*, and the structure constants of y in the basis Ef, RN EfL are such
rational functions cfj(t) € CJ[t] that cfj (0) = cfj, then A — B. In this case EY, ..., E! is called a parametrized basis
for A — B. To simplify our equations, we will use the notation A; = (e;,...,e,), i = 1,...,n and write simply
ApA, C A, instead of cfj =00G@>p,j>q k>r).

Since the variety of 4-dimensional nilpotent left symmetric algebras contains infinitely many non-isomorphic al-
gebras, we have to do some additional work. Let A(x) := {A(a)}qer be a series of algebras, and let B be another
algebra. Suppose that for o € I, A(«) is represented by the structure () € L(T') and B € L(T) is represented by
the structure A\. Then we say that A(x) — B if A € {O(pu(a))}aer, and A(x) A Bif A € {O(u(@)) }aer-

Let A(x), B, u(a) (v € I) and X be as above. To prove A(x) — B it is enough to construct a family of pairs
(f(t),g(t)) parametrized by t € C*, where f(t) € I and g(t) € GL(V). Namely, let ey, ..., e, be a basis of V and

cfj (1 < 1,7,k < n) be the structure constants of X in this basis. If we construct ag :C*—-C@1 <4,7<n)and

n
f:C* — I'suchthat E! = Y al(t)ej (1 < i < n)form a basis of V for any ¢ € C*, and the structure constants of

j=1
fif(r) in the basis EY, ..., E}, are such rational functions cfj (t) € C[t] that cfj 0) = cfj, then A(x) — B. In this case
EY ..., E! and f(t) are called a parametrized basis and a parametrized index for A(x) — B, respectively.

We now explain how to prove A(x) 4 B. Note that if Det A(a) > Der B for all a € I then A(x) 4 B. One can
also use the following Lemma, whose proof is the same as the proof of Lemma 1.5 from [25].

Lemma 5. Let B be a Borel subgroup of GL(V) and R C IL(T') be a B-stable closed subset. If A(x) — B and for
any o € I the algebra A(«) can be represented by a structure (o) € R, then there is A € R representing B.

2.3. The geometric classification of 4-dimensional nilpotent left symmetric algebras. The main result of the
present section is the following theorem.

Theorem B. The variety of 4-dimensional nilpotent left symmetric algebras has dimension 15 and it has three irre-
ducible components defined by infinite families of algebras Li,()\), La; (\) and L (A, «).

Proof. Recall that the description of all irreducible components of 4-dimensional nilpotent Novikov algebras was
given in [34]]. Using the cited result, we can see that the variety of 4-dimensional Novikov algebras has two irreducible
components given by the following families of algebras:

4 . _ _ _ _ _ _
N5p(a) : ejea=e3 ejeg =aes ejez =ey €96y = €4 €963 =e€4 €363 = —e4
N§2(A) . e1ep = ey e1€ep = e3 €1e3 = (2 — )\)64 €9€1 = )\64 €9€e9 = )\64 €3e] = )\64

Now we can prove that the variety of 4-dimensional nilpotent left symmetric algebras has three irreducible compo-
nents. One can easily compute that

Der Liy(\) =2 DerLi(\) =2 DerLiz;(\,a) =3

The list of all necessary degenerations is given below:
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4 4 t T T I+ 21 I3 _

Lis(t) — Nygle) | By = at—at? e1+ a<71+§)f2 T oramee Bi=ao 1+t)62 + rramzes
t @ t
B3 = rcigoe® ~ oS ieni Ey= m&l

L, (t+ A — 2 — N3 (\) | Bt =tey Eb = t2e; EL =t3es Bl =2t ey

23 [ZEESY 22 1 2 3 4 2t X
L3, (-t - L, BEf =e1+t7ea + (1 - 27 + t%)es Eb =t2e3 + t%e3 + tey

Ef =tes+ (1 —t2+t3)ey El =t3ey

Lél — 1/012 E{ =e] Eé = eg Eé =tTes Ei =tTey
L, — L, El =t"ley El=12e Ef =t"les El =t 3¢y
Lgl — Lg4 E{ =t Teg E% =t 2eq Eg =t 2e3 Ei =t Tey
L3, — Lgs Et =t"ley El=t"ley Eil =t2e3 El =t3ey
Li,(t72) — L& E! =t3e;  EL={t%ey Ef =tle3 E! =tey
L, — L&, Ef =t"ley E§=t"leg Bt =123 Ef =t3e,4

4 (Lt 4 . 2t3(2z+2t it?) zt3( 2+2it+1?) it? (—242it4+12)? + t2(—2+42it+t2)
L16 (55 = Lo | B = e Ot Grorain® 2T Grorernt @ B T T ey @

ot (—242it41¢2)2 t4(—2+42it412)° . 72t4(—2+2it+t2)3

. . P8 = ntennt 9 F Trntemat 4 L Sl 2 T2 A
L — L E!'=t"'er FE.=e2 Ef=t""e3 E! =t “ey

10 09 1 2 3 4

3

L (-1, 1) — L, Et =tey EY = teo EL = t%e3 Ef = 2ses
L%Q(A) — Lzlll()\) E{ = t_lel Eé = t_leg E§ = t_263 E}i =t 384
lei4(>\) — LinS()\) E{ =t Teg E% =t legy E§ :\/1‘/7263 Ei =t 3¢y
L+ — Li,(\ y=+1-4x

¢ t4m? t(147) (2 (N (7)) 43 (147) (L1 —31) — A2)+32t2A3)
Ei=-"Sxpat+t-—f et N2 A — (=)

26((1-7) (A2 1)+ A (3— A/)) +t tz(2t(1—~/)4—)\(1—6'y2+8'ye‘—3'y4—32A2))+(1—'y)2)\2(t(5+2'y+w2—12>\)—4)\2)]

t_ _t(l—'v)
Bz = ot RN 2 : BT (M=)~ (1)) e
t_ (1+w> 2 ()2 (6(E42) (147) 2 +422 (1= —t) ¢ _ t*(144)°
By=—"ps e~ SAO (11 N)2 €4 Ey= "7 c
Lil6(>‘) — Lzlls( ) ‘ E{ = t_lel Eé = t_lez Eé = t_263 Ei = t_364
L, (t+X) — L} (,\) v =+1-4)
¢ t(1—n)? t(1—~) t(t2(t+2) (1—7) 2 +422 (1—7)2 (£(1—3X) = 22) +32¢223)
Bi=-Tamrat s et I (FA—7)— (TN es
Bt 7t(1—w) n 26((1-7) (A2 ) +£A(3— 7)) - t t2(2t(1—’y)4—A(17672+87373'y4732>\2))+(17'y)2)\Q(t(5+2'y+'y2712>\)74)\2)] .
: 51—y a3 1 -2—) NI A=) (A2 (=)= (17700 3
Et: (1 »y) _t 11—~ t(tHN)(1—)+4r“(1—A—t Rt — + (1 »y)
D5 % BB (102 4 4 8a7__ ¢4
i (1 £=t°(a=D L4 . >t — t_ 42 ¢ ¢ 2¢7
23 (g,m> — 17(c) | EY =tey El =t?es El =e3 E4:me4
4 (2 4 _ t(2+t) t(2+1) _ t3(2+t)3 2t3(241)3
L3 (1) — Lig By = 1T e o B = —Sanees - (e
t _ t7(2+1) t? (2+t) Lt (2+1) t _ _t (2+t)
By = anT 2 Tarns @ T aens i i (1+t)5 o
Li, — L%, El =tley FEl=1t2e Ef =1 3e3 E! =t e
L;‘l(t—l) — L3, El =t7ley El=12e Ef =133 E! = t—5e4
4 4 t_ 2—t t _ ___ Atat+4(1+a)—tZ(1+2a)
L3s(t 5% = L) | By=e— H(6—tt2ta—t2(1+2a)) 2 By =e t(6—t+2ta—t2(1+2a)) *
t 2=+t (2=1)(2+t(2a—1)) t _
By =e2— t(6—t+2ta—t2(1+20)) €= 12(6—t+2ta—t2(14+2a))> ¢4 Ey=ea
L23(t + ’\7 ()\ 1) ) — L%4(A)
Bt — 2t3 (A2 —9)+2t% (9—21A+3AZ+23) +£(3+13X— 1622 +423)+-2(A—3)
1=ert 260 —3)(Z(3X) (39X ~232] -2 (3-61 7)) €
2t3 (A2 —9)+t2(21-29A— 1002 +6A3) —£(3-182+32% +12X% —4x*) —2(3+22—7?)
Et =eg + €3
2 2t(A—3)(t2(3+ 1) —t(3—9A—2X22) —A(3—6A—)2))

8(A=3)2A(1+A)—2t7 (3+X)% (21— 132+222) +2¢5 (3+1)? (153 —387A+ 115702 +2323 — 824 ) +4¢(27—272—9322 +5113 4662 —482° +8)16)
482A(A—1)(A—3)2 (82 (3+A)—t(3—9A—222) =X (3—61—A2))?
2t°(1134—48061+3789A2 +22801% —8940* —284X5 45106 +10A7) +43 (274+999A —3591 22 +2941 25 +3682* —1372X5+432X5+2017 —16)%)
422(A—1)(A—3)2(t2(3+A) —t(3—9A—222) —A(3—61—12))?
" 2t4(324—2700A+508572 16473 —22180% +802X° +1410% —3907 —428) +2¢2 (54+1172— 20122 +632% +2310% 42815 —2287\6 411227 —161%)
42X (A—1)(A—=3)2(£2(3+A)—t(3—9A—2X2) =X (3—61—A2))?

€4

Bt — t3(3+2)% (AN—13)+2 (144— 189X — 9422 +190% +82*4) —2¢(9—69A+11A%+3723 —120%) —12(3+22—2?) Bt — 20-8)4t(34+))
37~ 2+ 0) (B0t A2) (3-6A—A2—t(3+N)) 4 47 (E—arta2) A
|
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