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Abstract—In this paper, we consider an inhomogeneous sixth-order partial differential equation
with two redefinition functions at the end point of the given segment. These redefinition functions
enter nonlinearly into partial differential equation. The Fourier method of separation of variables
is applied. Absolutely and uniformly convergence of Fourier series are proved. The Cauchy–
Schwartz inequalities and the Bessel inequality are used. Theorems on the unique solvability of
inverse problems are proved. The method of successive approximations is used in combination with
the method of contraction mappings.
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1. INTRODUCTION

In recent years the interest to study the differential equations with local and nonlocal boundary
conditions is increasing (see, for example, [1–16]. In [17] a physical situation, in which a non-metallic
conductor is in contact with a perfect conductor, is studied. In [18], the problems of mathematical models
in reaction-diffusion systems are considered. In [19], the nonlocal conditions are used in the theory of
phase transitions. Inverse problems for differential equations find many applications in modern science
and technology. Therefore, a large number of research works are devoted to the study of various kinds of
inverse problems (see, for example [20–29]).

In this paper, we study an inverse boundary value problem for an inhomogeneous sixth-order partial
differential equation with two redefinition functions at the end point of the given segment. The questions
of the existence and uniqueness of the solution to the inverse boundary value problem are investigated.

2. FORMULATION OF THE PROBLEM STATEMENT

In the rectangular domain Ω = {0 < t < T, 0 < x < l} we consider the following partial differential
equation

Utt(t, x) − a(t)
(
Uttxx(t, x)− Uttxxxx(t, x)

)
+ b(t)

(
Uxx(t, x)− Uxxxx(t, x)

)

= f

(
t, x,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

)
(1)
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with Dirichlet boundary value conditions

U(t, 0) = U(t, l) = Uxx(t, 0) = Uxx(t, l) = 0, 0 ≤ t ≤ T (2)

and conditions at the endpoint of the given segment:

U(T, x) = ϕ1(x), 0 ≤ x ≤ l, (3)

Ut(T, x) = ϕ2(x), 0 ≤ x ≤ l, (4)

where f(t, x, · , ·) ∈ C (Ω×R×R), 0 < a(t) ∈ C[0, T ], 0 �= b(t) ∈ C[0, T ], functions ϕ1(x) and ϕ2(x)
are redefinition functions, T, l are given positive numbers.
Remark 1. The function on the right-hand side of the equation (1) depends from the variable t
and this function is not zero for 0 < x < l.
Remark 2. For the functions ϕ1(x) and ϕ2(x) the following periodical conditions are fulfilled

ϕi(0) = ϕi(l) = ϕ′′
i (0) = ϕ′′

i (l) = 0, ϕi(x) = ϕi(x) �= 0, x ∈ (0, l), i = 1, 2.

In order to determine the unknown functions of redefinition we use the following two additional
conditions

U(t1, x) = ψ1(x), 0 ≤ x ≤ l, (5)

U(t2, x) = ψ2(x), 0 ≤ x ≤ l, (6)

where ψ1(x) and ψ2(x) are known enough smooth on the segment [0, l] functions, 0 < t1 < t2 < T .
Remark 3. For the functions ψ1(x) and ψ2(x) the following periodical conditions are fulfilled

ψi(0) = ψi(l) = ψ′′
i (0) = ψ′′

i (l) = 0;ψi(x) �= 0, x ∈ (0, l), i = 1, 2.

Problem statement. To find three functions
{
U(t, x) ∈ C (Ω) ∩ C2,4

t,x (Ω) ∩ C2+4
t,x (Ω), ϕi(x) ∈ C[0, 1], i = 1, 2

}
,

the first of which satisfies the differential equation (1) and the specified conditions (2)–(6), where
Ω = {0 ≤ t ≤ T, 0 ≤ x ≤ l}.

3. FORMAL SOLUTION OF THE PROBLEM

Note that the functions ϑn(x) =

√
2

l
sinλnx, where λn =

nπ

l
, n ∈ N, form a complete system

of orthonormal eigenfunctions in the space L 2[0, l]. Therefore, we seek nontrivial solutions to the
inhomogeneous differential equation (1) in the form of a Fourier series in sine

U(t, x) =

√
2

l

∞∑

n=1

un(t) sinλnx, (1)

un(t) =

√
2

l

l∫

0

U(t, x) sinλnx dx. (2)

We require that the function f(t, x, ·, ·) can also be expanded in a Fourier series

f(t, x, ·, ·) =
√

2

l

∞∑

n=1

fn(t, ·, ·) sinλnx, (3)

fn(t, ·, ·) =
√

2

l

l∫

0

f(t, x, ·, ·) sinλnx dx. (4)
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Substituting the Fourier series (1) and (3) into the given nonlinear differential equation (1), we obtain a
countable system of ordinary differential equations of the second order

u′′n(t) = hn(t)un(t) + fn(t, ·, ·), where hn(t) =

(
λ2
n + λ4

n

)
b(t)

1 + (λ2
n + λ4

n) a(t)
. (5)

By integrating twice the countable system of differential equations (5), we obtain the countable system
of integral equations

un(t) = A1n +A2n t+

t∫

0

(t− s) [hn(s)un(s) + fn(s, ·, ·)] ds, (6)

where A1n and A2n are unknown coefficients, which will be determined.
Now, suppose the redefinition functions ϕ1(x) and ϕ2(x) expand into a Fourier series. Then, using

the Fourier coefficients (2), the integral conditions (3) and (4) are written in the following form

un(T ) =

√
2

l

l∫

0

U(t, x) sinλnx dx =

√
2

l

l∫

0

ϕ1(x) sinλnx dx = ϕ1n, (7)

u′n(T ) =

√
2

l

l∫

0

Ut(t, x) sinλnx dx =

√
2

l

l∫

0

ϕ2(x) sinλnx dx = ϕ2n. (8)

To find the unknown coefficients A 1n and A 2n in the integral equation (6), we use the boundary
conditions (7) and (8). Then from (6) we have

A1n = ϕ1n − ϕ2n T +

T∫

0

s [hn(s)un(s) + fn(s, ·, ·)] ds,

A2n = ϕ2n −
T∫

0

[hn(s)un(s) + fn(s, ·, ·)] ds.

Substituting these values of A 1n and A 2n into representation (6), we obtain a countable system of
Volterra integral equations

un(t) = ϕ1n + ϕ2n(t− T ) +

T∫

t

(s− t) [hn(s)un(s) + fn(s, ·, ·)] ds. (9)

Substituting representation (9) in the Fourier series (1), we obtain

U(t, x) =

√
2

l

∞∑

n=1

[
ϕ1n + ϕ2n(t− T ) +

T∫

t

(s− t) [hn(s)un(s) + fn(s, ·, ·)] ds
]
sinλnx. (10)

We will now formally define the redefinition functions ϕ1(x) and ϕ2(x). For this purpose, we subordinate
function (10) to conditions (3) and (4):

ψ1(x) =

√
2

l

∞∑

n=1

⎡

⎣ϕ1n + ϕ2n(t1 − T ) +

T∫

t1

(s− t1) [hn(s)un(s) + fn(s, ·, ·)] ds

⎤

⎦ sinλnx,

ψ2(x) =

√
2

l

∞∑

n=1

⎡

⎣ϕ1n + ϕ2n(t2 − T ) +

T∫

t2

(s− t2) [hn(s)un(s) + fn(s, ·, ·)] ds

⎤

⎦ sinλnx.
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Expanding the functions ψ1(x) and ψ2(x) in a Fourier series, we obtain a system of countable systems
of functional equations

ψi n = ϕ1n + ϕ2n(ti − T ) +

T∫

ti

(s− ti) [hn(s)un(s) + fn(s, ·, ·)] ds, i = 1, 2, (11)

where

ψi n =

√
2

l

l∫

0

ψi(x) sinλnx dx, i = 1, 2. (12)

Solving system (11), we find the Fourier coefficients for the redefinition functions

ϕ1n = I1 (t;un, ϕ1n, ϕ2n) ≡ ψ1n
t2 − T

t2 − t1
+ ψ2n

T − t1
t2 − t1

+

T∫

t1

K1(s)

⎡

⎣hn(s)un(s) + fn

⎛

⎝s,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

⎞

⎠

⎤

⎦ ds, (13)

ϕ2n = I2 (t;un, ϕ1n, ϕ2n) ≡ −ψ1n
1

t2 − t1
+ ψ2n

1

t2 − t1

+

T∫

t1

K2(s)

⎡

⎣hn(s)un(s) + fn

⎛

⎝s,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

⎞

⎠

⎤

⎦ ds, (14)

where

K1(s) =

⎧
⎨

⎩

t1 − s

t2 − t1
− s+ t1, t1 ≤ s < t2,

t1 − s− 1, t2 ≤ s ≤ T,

K2(s) =

⎧
⎨

⎩

s− t1
t2 − t1

, t1 ≤ s < t2,

1, t2 ≤ s ≤ T.

Substituting representations (13) and (14) in the Fourier series, we have the formal series

ϕ1(x) =

√
2

l

∞∑

n=1

sinλnx

[
ψ1n

t2 − T

t2 − t1
+ ψ2n

T − t1
t2 − t1

+

T∫

t1

K1(s)

⎡

⎣hn(s)un(s) + fn

⎛

⎝s,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

⎞

⎠

⎤

⎦ ds

⎤

⎦ , (15)

ϕ2(x) =

√
2

l

∞∑

n=1

sinλnx

[
− ψ1n

1

t2 − t1
+ ψ2n

1

t2 − t1

+

T∫

t1

K2(s)

⎡

⎣hn(s)un(s) + fn

⎛

⎝s,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

⎞

⎠

⎤

⎦ ds

⎤

⎦ . (16)

Substituting representations (13) and (14) into formulas (9) and (10), we obtain the following countable
system of integral equations

un(t) = I3 (t;un, ϕ1n, ϕ2n) ≡ ψ1n
t2 − t

t2 − t1
+ ψ2n

t− t1
t2 − t1
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+

T∫

t

K3(s)

⎡

⎣hn(s)un(s) + fn

⎛

⎝s,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

⎞

⎠

⎤

⎦ ds (17)

and the next Fourier series for the main unknown function

U(t, x) =

√
2

l

∞∑

n=1

sinλnx

[
ψ1n

t2 − t

t2 − t1
+ ψ2n

t− t1
t2 − t1

+

T∫

t

K3(s)

⎡

⎣hn(s)un(s) + fn

⎛

⎝s,

l∫

0

ϕ1(y) dy,

l∫

0

ϕ2(y) dy

⎞

⎠

⎤

⎦ ds

⎤

⎦ , (18)

where

K3(s) =

⎧
⎨

⎩
s− t1, 0 ≤ s ≤ t1,

K1(s) + (t1 − T )K2(s) + s− t1, t1 < s ≤ T.

4. SOLVABLE OF THE SYSTEM OF COUNTABLE SYSTEM OF FUNCTIONAL
AND INTEGRAL EQUATIONS

First, we present the following well-known Banach spaces, which we will use in our further actions.

The space B 2(T ) of function sequences {un(t) }∞
n=1 on the segment [0; T ] with the norm

‖u (t) ‖B 2(T ) =

{ ∞∑

n=1

(
max

t∈ [0;T ]
|un(t) |

) 2
}1/2

< ∞.

The Hilbert coordinate space �2 of number sequences {ϕn}∞
n=1 with the norm

‖ϕ ‖ � 2
=

{ ∞∑

n=1

|ϕn | 2
}1/2

< ∞.

The space L 2 [0, l] of square-integrable functions on an interval [0, l] with norm

‖ϑ (x) ‖L 2[0,l]
=

⎧
⎨

⎩

l∫

0

|ϑ (η) | 2 dη

⎫
⎬

⎭

1/2

< ∞.

Smoothness conditions. Let for the functions ψi(x) ∈ C 4[0, l] , i = 1, 2, f (t, x, ·, ·) ∈ C 0, 4 (Ω×
R× R) on the segments [0, l] exist peace-wise continuous derivatives up fifth order on x. Then, after
integration the functions (12) and (4) by part fifth time on the variable E, we obtain the following
relations

|ψi n | =
(
l

π

)5
∣∣ψ V

i n

∣∣

n 5
, i = 1, 2, (1)

| fn(t, ·, ·) | =
(
l

π

)5
∣∣ f V

n (t, ·, ·)
∣∣

n 5
, (2)

where

ψ V
i n =

l∫

0

∂ 5 ψi (x)

∂ x 5
sinλnx dx, i = 1, 2, f V

n (t, ·, ·) =
l∫

0

∂ 5 f(t, x, ·, ·)
∂ x 5

sinλnx dx.
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Here the Bessel inequalities are valid

∞∑

n=1

[
ψ V

i n

] 2 ≤
(
2

l

) 5
l∫

0

[
∂ 5 ψi(x)

∂ x 5

] 2

dx, i = 1, 2, (3)

∞∑

n=1

[
f V
n (t, ·, ·)

] 2 ≤
(
2

l

) 5
l∫

0

[
∂ 5f(t, x, ·, ·)

∂ x 5

] 2

dx. (4)

Theorem 1. Let the smoothness conditions and the following conditions be fulfilled:
1) | f (t, x, ϕ11, ϕ21)− f (t, x, ϕ12, ϕ22) | ≤ M0(t, x) [|ϕ11 − ϕ12 |+ |ϕ21 − ϕ22 |],
2) ρ = max

{
α 2 + α 4 + α 6;

√
l (α3 + α5 + α7) ‖M0(t, x) ‖L2[0,l]

}
< 1, where

α 2 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[0,T ]

⎛

⎝
T∫

t

|K3(s)hn(s) | d s

⎞

⎠

2
⎤

⎥
⎦

1

2

, α 4 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[t1,T ]

⎛

⎝
T∫

t

|K1(s)hn(s) | ds

⎞

⎠

2
⎤

⎥
⎦

1

2

,

α 6 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[t1,T ]

⎛

⎝
T∫

t

|K2(s)hn(s) | ds

⎞

⎠

2
⎤

⎥
⎦

1

2

, α 3 = max
t∈[0,T ]

T∫

t

|K3(s) | d s,

α 5 = max
t∈[t1,T ]

T∫

t

|K1 (s) | ds, α 7 = max
t∈[t1,T ]

T∫

t

|K2(s) | ds.

Then the system of countable systems of equations (17), (13), (14) is uniquely solvable in the
spaces B 2(T ), � 2, respectively. In this case, the desired solution can be found from the following
iterative process:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u 0
n(t) = ψ1n

t2 − t

t2 − t1
+ ψ2n

t− t1
t2 − t1

, um+1
n (t) = I3 (t;u

m
n , ϕm

1n, ϕ
m
2n) ,

ϕ 0
1n = ψ1n

t2 − T

t2 − t1
+ ψ2n

T − t1
t2 − t1

, ϕm+1
1n = I1 (t;um

n , ϕm
1n, ϕ

m
2n) ,

ϕ 0
2n = −ψ1n

1

t2 − t1
+ ψ2n

1

t2 − t1
, ϕm+1

2n = I2 (t;um
n , ϕm

1n, ϕ
m
2n) ,

(5)

m = 0, 1, 2, ...

Proof. We use the method of contraction maps in combination with the method of successive approx-
imations in spaces B 2(T ), � 2. We apply the Cauchy–Schwartz inequality (1) and (2) and then the
Bessel inequalities (3) and (4). Then we obtain from (5) that the following estimates are valid:

∞∑

n=1

max
t∈[0,T ]

∣∣ u 0
n(t)

∣∣ ≤
∞∑

n=1

max
t∈[0,T ]

[
|ψ 1n |

∣
∣∣
∣
t2 − t

t2 − t1

∣
∣∣
∣+ |ψ 2n |

∣
∣∣
∣
t− t1
t2 − t1

∣
∣∣
∣

]

≤ α1

(
l

π

)5
[ ∞∑

n=1

∣∣ψV
1n

∣∣

n 5
+

∞∑

n=1

∣∣ψV
2n

∣∣

n 5

]

≤ α1

(
l

π

)5
(√

2

l

) 5
√√√
√

∞∑

n=1

1

n 10

×
[∥
∥∥
∥
∂ 5ψ1(x)

∂ x 5

∥
∥∥
∥
L 2[0,l]

+

∥
∥∥
∥
∂ 5 ψ2(x)

∂ x 5

∥
∥∥
∥
L 2[0,l]

]

< ∞, (6)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 3 2022



810 YULDASHEV, KILICHEV

where α 1 = max
t∈[0,T ]

{∣∣
∣∣
t2 − t

t2 − t1

∣
∣
∣∣ ;
∣
∣
∣∣
t− t1
t2 − t1

∣
∣
∣∣

}
;

∞∑

n=1

∣
∣ϕ0

1n

∣
∣ ≤

∞∑

n=1

[
|ψ1n |

∣∣
∣∣
t2 − T

t2 − t1

∣∣
∣∣+ |ψ2n|

∣∣
∣∣
T − t1
t2 − t1

∣∣
∣∣

]
≤ β1

(
l

π

)5
[ ∞∑

n=1

∣∣ψV
1n

∣∣

n5
+

∞∑

n=1

∣∣ψV
2n

∣∣

n5

]

≤ β1

(
l

π

)5
(√

2

l

) 5
√√√
√

∞∑

n=1

1

n 10

[∥
∥
∥∥
∂ 5 ψ1(x)

∂ x 5

∥
∥
∥∥
L 2[0,l]

+

∥
∥
∥∥
∂ 5 ψ2(x)

∂ x 5

∥
∥
∥∥
L 2[0,l]

]

< ∞, (7)

where β 1 = max

{∣∣∣
∣
t2 − T

t2 − t1

∣
∣∣
∣ ;
∣
∣∣
∣
T − t1
t2 − t1

∣
∣∣
∣

}
;

∞∑

n=1

∣∣ϕ0
2n

∣∣ ≤
∞∑

n=1

[
|ψ1n |

∣
∣∣
∣−

1

t2 − t1

∣
∣∣
∣+ |ψ2n|

∣
∣∣
∣

1

t2 − t1

∣
∣∣
∣

]
≤ γ1

(
l

π

)5
[ ∞∑

n=1

∣
∣ψV

1n

∣
∣

n5
+

∞∑

n=1

∣
∣ψV

2n

∣
∣

n5

]

≤ γ1

(
l

π

)5
(√

2

l

) 5
√√
√√

∞∑

n=1

1

n 10

[∥∥
∥
∥
∂ 5 ψ1(x)

∂ x 5

∥∥
∥
∥
L 2[0,l]

+

∥∥
∥
∥
∂ 5 ψ2(x)

∂ x 5

∥∥
∥
∥
L 2[0,l]

]

< ∞, (8)

where γ 1 =

∣∣
∣∣

1

t2 − t1

∣∣
∣∣. Taking into account estimates (6)–(8), applying the Cauchy–Schwartz inequal-

ity (1) and (2) and then the Bessel inequalities (3) and (4), for an arbitrary difference of approximation
(5) we obtain

∞∑

n=1

max
t∈[0,T ]

∣∣ um+1
n (t) − um

n (t)
∣∣ ≤

∞∑

n=1

max
t∈[0,T ]

T∫

t

|K3(s)hn(s) |
∣∣um

n (s)− um−1
n (s)

∣∣ ds

+α3

∞∑

n=1

∣
∣∣
∣∣
∣

l∫

0

M0(t, x) sinλnx dx

l∫

0

∞∑

i=1

[∣∣ϕm
1 i − ϕm−1

1 i

∣
∣+

∣
∣ϕm

2 i − ϕm−1
2 i

∣
∣] sinλ iy dy

∣
∣∣
∣∣
∣

≤ α 2

∥∥um(t)− um−1(t)
∥∥
B 2(T )

+α3 ‖M0(t, x) ‖L2[0,l]

∣
∣∣
∣
∣∣

l∫

0

∞∑

n=1

[∣∣ϕm
1n − ϕm−1

1n

∣
∣+

∣
∣ϕm

2n − ϕm−1
2n

∣
∣] sinλny dy

∣
∣∣
∣
∣∣

≤ α 2

∥
∥um(t)− um−1(t)

∥
∥
B 2(T )

+
√
l α3 ‖M0(t, x) ‖L2[0,l]

[∥
∥ϕm

1 − ϕm−1
1

∥
∥
�2
+
∥
∥ϕm

2 − ϕm−1
2

∥
∥
�2

]
,

(9)

where α 2 =

⎡

⎣
∞∑

n=1
max
t∈[0,T ]

(
T∫

t

|K3(s)hn(s) | ds
)2
⎤

⎦

1

2
, α 3 = max

t∈[0,T ]

T∫

t

|K3(s) | ds. Similarly, we find that

the following estimates are also valid for the Fourier coefficients of the redefinition functions

∞∑

n=1

∣∣ϕm+1
1n − ϕm

1n

∣∣ ≤
∞∑

n=1

max
t∈[t1,T ]

T∫

t

|K1(s)hn(s) |
∣∣ um

n (s)− um−1
n (s)

∣∣ ds

+α5

∞∑

n=1

∣
∣∣
∣∣
∣

l∫

0

M0(t, x) sinλnx dx

l∫

0

∞∑

i=1

[∣∣ϕm
1 i − ϕm−1

1 i

∣
∣+

∣
∣ϕm

2 i − ϕm−1
2 i

∣
∣] sinλ iy dy

∣
∣∣
∣∣
∣
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≤ α 4

∥∥um(t)− um−1(t)
∥∥
B 2(T )

+
√
l α5 ‖M0(t, x) ‖L2[0,l]

[∥∥ϕm
1 − ϕm−1

1

∥∥
�2
+
∥∥ϕm

2 − ϕm−1
2

∥∥
�2

]
,

(10)

where α 4 =

⎡

⎣
∞∑

n=1
max

t∈[t1,T ]

(
T∫

t

|K1(s)hn(s) | ds
)2
⎤

⎦

1

2
, α 5 = max

t∈[t1,T ]

T∫

t

|K1(s) | d s;

∞∑

n=1

∣∣ϕm+1
2n − ϕm

2n

∣∣ ≤ α 6

∥∥um(t)− um−1(t)
∥∥
B 2(T )

+
√
l α7 ‖M0(t, x) ‖L2[0,l]

[∥∥ϕm
1 − ϕm−1

1

∥∥
�2
+
∥∥ϕm

2 − ϕm−1
2

∥∥
�2

]
, (11)

where α 6 =

⎡

⎣
∞∑

n=1
max

t∈[t1,T ]

(
T∫

t

|K2(s)hn(s) | ds
)2
⎤

⎦

1

2
, α 7 = max

t∈[t1,T ]

T∫

t

|K2(s) | ds. From the esti-

mates (9)–(11), we derive that

V m ≤ ρV m−1, m = 1, 2, 3, ..., (12)

where
V m =

∥
∥um+1(t)− um(t)

∥
∥
B 2(T )

+
∥
∥ϕm+1

1 − ϕm
1

∥
∥
�2
+
∥
∥ϕm+1

2 − ϕm
2

∥
∥
�2
,

ρ = max
{
α 2 + α 4 + α 6;

√
l (α3 + α5 + α7) ‖M0(t, x) ‖L2[0,l]

}
.

According to the second condition of the theorem, ρ < 1. Consequently, it follows from estimate (12)
that the operators on the right-hand sides of (17), (13), (14) are contracting. It follows from estimates
(6)–(8) that there is a unique triple of fixed points, which is a solution to systems of countable systems
of functional and integral equations (17), (13), (14) in spaces B 2 (T ), � 2. Theorem 1 is proved.

Remark 4. Since λn =
nπ

l
, n ∈ N, we consider the function hn(t) =

(
λ2
n + λ4

n

)
b(t)

1 + (λ2
n + λ4

n) a(t)
for the large

values of n:

lim
n→∞

hn(t) = lim
n→∞

(
λ2
n + λ4

n

)
b(t)

1 + (λ2
n + λ4

n) a(t)
=

b(t)

a(t)
.

If, for example, we choose b(t) such that b(t) = bn(t) =
a(t)

n
, then, it is obvious that, the following series

are convergence:

α 2 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[0,T ]

⎛

⎝
T∫

t

|K3(s)hn(s) | d s

⎞

⎠

2
⎤

⎥
⎦

1

2

=

⎡

⎣
∞∑

n=1

max
t∈[0,T ]

⎛

⎝
T∫

t

|K3(s) |2 d s

T∫

t

| hn(s) |2 d s

⎞

⎠

⎤

⎦

1

2
,

α 4 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[t1,T ]

⎛

⎝
T∫

t

|K1(s)hn(s) | d s

⎞

⎠

2
⎤

⎥
⎦

1

2

=

⎡

⎣
∞∑

n=1

max
t∈[t1,T ]

⎛

⎝
T∫

t

|K1(s) |2 d s

T∫

t

|hn(s) |2 d s

⎞

⎠

⎤

⎦

1

2
,

α 6 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[t1,T ]

⎛

⎝
T∫

t

|K2(s)hn(s) | d s

⎞

⎠

2
⎤

⎥
⎦

1

2

=

⎡

⎣
∞∑

n=1

max
t∈[t1,T ]

⎛

⎝
T∫

t

|K2(s) |2 d s

T∫

t

|hn(s) |2 d s

⎞

⎠

⎤

⎦

1

2
.
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5. UNIFORM CONVERGENCE OF SERIES

Theorem 2. The function U (t, x) is defined using the Fourier series (18). If

ᾱ 2 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[0,T ]

⎛

⎝n 4

T∫

t

|K3(s)hn(s) | ds

⎞

⎠

2
⎤

⎥
⎦

1

2

< ∞,

ᾱ 4 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[t1,T ]

⎛

⎝n 4

T∫

t

|K1(s)hn(s) | ds

⎞

⎠

2
⎤

⎥
⎦

1

2

< ∞,

ᾱ 6 =

⎡

⎢
⎣

∞∑

n=1

max
t∈[t1,T ]

⎛

⎝n 4

T∫

t

|K2(s)hn(s) | ds

⎞

⎠

2
⎤

⎥
⎦

1

2

< ∞,

then series (18) converges absolutely and uniformly. Moreover, function (18) is continuously
differentiable with respect to the variables included in equation (1). In addition, series (15) and
(16), which determine the redefinition functions, also converge.

Proof. Taking into account that, u(t) ∈ B 2(T ), similarly to (6) and (9), from (18) we obtain the
estimate

|U(t, x) | ≤
√

2

l

∞∑

n=1

| sinλnx |
{

α1

(
l

π

)5
[ ∞∑

n=1

∣
∣ψV

1n

∣
∣

n5
+

∞∑

n=1

∣
∣ψV

2n

∣
∣

n5
+

∞∑

n=1

max
t∈[0,T ]

∣
∣ fV

n (t, ·, ·)
∣
∣

n5

]

+

∞∑

n=1

max
t∈[0,T ]

T∫

t

|K3(s)hn(s) | ·
∣
∣um

n (s)− um−1
n (s)

∣
∣ ds

⎫
⎬

⎭

≤
√

2

l

⎧
⎨

⎩
α 2 ‖u(t) ‖B 2(T ) + α1

(
l

π

)5
(√

2

l

) 5
√√
√√

∞∑

n=1

1

n 10

×
[∥
∥∥
∥
∂ 5 ψ1(x)

∂ x 5

∥
∥∥
∥
L 2[0,l]

+

∥
∥∥
∥
∂ 5 ψ2(x)

∂ x 5

∥
∥∥
∥
L 2[0,l]

+ max
t∈[0,T ]

∥
∥∥
∥
∂ 5 f(t, x, ·, ·)

∂ x 5

∥
∥∥
∥
L 2[0,l]

]}

< ∞. (1)

The absolute and uniform convergence of the Fourier series (18) follows from (1). The convergence of
series (15) and (16) is proved similarly. Now we differentiate function (18) the required number of times

Utt(t, x) =

√
2

l

∞∑

n=1

sinλnx

[
−ψ1n

1

t2 − t1
+ ψ2n

1

t2 − t1
−K3(t) [hn(t)un(t) + fn(t, ·, ·)]

]
, (2)

∂ 4

∂ x 4
U(t, x) =

√
2

l

∞∑

n=1

(π n

l

) 4
sinλnx

×

⎡

⎣ψ1n
t2 − t

t2 − t1
+ ψ2n

t− t1
t2 − t1

+

T∫

t

K3(s) [hn(s)un(s) + fn(s, ·, ·)] ds

⎤

⎦ . (3)
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Similarly to (2) and (3), we define the following function in the form of an expansion in Fourier series
∂ 6U(t, x)

∂ t 2 ∂ x 4
. The proof of the convergence of the Fourier series (2) converges with the proof of the

convergence of the series (18). We will show the absolute and uniform convergence of series (3). For this
purpose, we use formulas (1)–(4). We apply the Cauchy–Schwartz inequality and the Bessel inequality.
Then we have

∣∣
∣∣
∂ 4

∂ x 4
U(t, x)

∣∣
∣∣ ≤

√
2

l

π 4

l 4

∞∑

n=1

n 4 |un(t ) | · | sinλnx |

≤
√

2

l

π 4

l 4

⎧
⎨

⎩
α 3 ‖u(t) ‖B 2(T ) + α1

(
l

π

)5
(√

2

l

) 5
√√
√√

∞∑

n=1

1

n 2

×
[∥∥
∥∥
∂ 5 ψ1(x)

∂ x 5

∥∥
∥∥
L 2[0,l]

+

∥∥
∥∥
∂ 5 ψ2(x)

∂ x 5

∥∥
∥∥
L 2[0,l]

+ max
t∈[0,T ]

∥∥
∥∥
∂ 5 f(t, x, ·, ·)

∂ x 5

∥∥
∥∥
L 2[0,l]

]}

< ∞. (4)

Similarly to (4), the following statements can be easy established

∣∣
∣∣
∂ 6U(t, x)

∂ t 2 ∂ x 4

∣∣
∣∣ < ∞. The theorem 2 is

proved.

6. CONCLUSION

The theory of differential equations plays an important role in solving applied problems. Especially,
inverse boundary value problems for partial differential equations have many applications in mathemat-
ical physics, mechanics and technology, in particular in nanotechnology.

In this paper, we investigated an inverse boundary value problem for the inhomogeneous sixth-
order partial differential equation (1) with Dirichlet boundary value conditions (2) and two redefinition
functions at the end point of the given segment (3), (4). The nonlinear right-hand side of this equation
consists the integrals of two redefinition functions. In determining the functions of redefinition we used
the additional conditions (5), (6). The questions of the existence and uniqueness of the solution of the
inverse boundary value problem (1)–(6) are studied.

The results obtained in this work allow us in the future to investigate nonlocal inverse boundary value
problems for the heat equation and the wave equation with many redefinition functions. We hope that our
work will stimulate the study of various kind of inverse boundary value problems for partial differential
and integro-differential equations with many redefinition functions.
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