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a b s t r a c t 

In our previous investigations, we have developed the renormalization group method to p -adic models 

on Cayley trees, this method is closely related to the investigation of dynamical system associated with a 

given model. In this paper, we are interested in the following question: how is the existence of the phase 

transition related to chaotic behavior of the associated dynamical system (this is one of the important 

question in physics)? To realize this question, we consider as a toy model the p -adic q -state Potts model 

on a Cayley tree, and show, in the phase transition regime, the associated dynamical system is chaotic, 

i.e. it is conjugate to the full shift. As an application of this result, we are able to show the existence of 

periodic (with any period) p -adic quasi Gibbs measures for the model. This allows us to know that how 

large is the class of p -adic quasi Gibbs measures. We point out that a similar kind of result is not known 

in the case of real numbers. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Models of interacting systems have been intensively studied

in the last years and new methodologies have been developed in

the attempt to understanding their intriguing features. One of the

most promising directions is the combination of statistical me-

chanics tools and methods adopted in dynamical systems. One of

such tools is the renormalization group (RG) which has had a pro-

found impact on modern statistical physics 1 . The renormalization

method is then applied in statistical mechanics and yielded lots of

interesting results. Since such investigations of phase transitions

of spin models on hierarchical lattices showed that they make

the exact calculation of various physical quantities [5,14] . One of

the most simple hierarchical lattice is a Cayley tree or a Bethe

lattice (see [39] ). This lattice is not a realistic lattice, however,

investigations of phase transitions of spin models on trees like the

Cayley tree show that they make the exact calculation of various

physical quantities [42] . 
∗ Corresponding author. 

E-mail addresses: far75m@yandex.ru , farrukh_m@iium.edu.my , 

far75m@gmail.com (F. Mukhamedov), hakimovo@mail.ru (O. Khakimov). 
1 This method appeared after Wilsons seminal work in the early 1970s [51] , based 

also on the ground breaking foundations laid by Fisher [10] . 
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On the other hand, there are many investigations that have

een conducted to discuss and debate the question due to the

ssumption that p -adic numbers provide a more exact and more

dequate description of microworld phenomena (see, for exam-

le [18,4 8,4 9] ). Consequently, various models in physics described

n the language of p -adic analysis (see [2,3,11,49,50] ), and numer-

us applications of such an analysis to mathematical physics have

een studied in [4,18,19,48] . These investigations proposed to study

ew probability models (namely p -adic probability), which cannot

e described using ordinary Kolmogorov’s probability theory (see

6,17,22,25,28] ). Therefore, p -adic probability models were investi-

ated in [21,24,25] . Using that, p -adic measure theory in [20,22,28] ,

he theories of p -adic and non-Archimedean stochastic processes

ave been developed. In [13,23,29–38,44] it has been developed

 -adic statistical mechanics within the scheme of the theory of p -

dic probability and p -adic stochastic processes. For complete re-

iew of the p -adic mathematical physics we refer to [7] . 

In [34] we have developed the renormalization group method

o p -adic λ-models on Cayley trees (which are generalizations of

he Ising model [16,36] ). Note that the renormalization method

s closely related to the investigation of p -adic dynamical system

ssociated with a given model (see [1,24,26] ). In this paper, we

re interested in the following question: how is the existence of

http://dx.doi.org/10.1016/j.chaos.2016.04.003
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cally conjugate to the shift dynamics ( �A , σ , d f ) . 
he phase transition related to chaotic behavior of the associated

 -adic dynamical system (this is one of the important question in

hysics [15] )? In the present paper, we consider as a toy model

he p -adic q -state Potts model on a Cayley tree [37] . It is known

35,38,43] that for this model there exists a phase transition if

 is divisible by p . We will show that, in the phase transition

egime, the associated p -adic dynamical system (which is rational

ynamical system, a few investigates are devoted to such kind of

ynamical systems [41,46] , but most study is devoted to polyno-

ial dynamical systems [8] ) is chaotic, i.e. it is conjugate to the

ull shift. Note that some p -adic chaotic dynamical systems have

een studied in [9,52] . As an application of this result, we are able

o show the existence of periodic (with any period) p -adic quasi

ibbs measures for the model. We point out that similar kind of

esult is not known in the case of real numbers. A few attempts

ave been done to find out either 2-periodic or weakly periodic

ibbs measures on the Cayley tree (see [40,45] ). The main result of

his paper allows us to know that how large is the class of p -adic

uasi Gibbs measures. If one considers p -adic Gibbs measures, then

t was shown [38] that there is no periodic p -adic Gibbs measures

xcept for translation-invariant ones for the Potts model. We stress

hat the set of p -adic quasi Gibbs measures is larger than the set

f p -adic Gibbs measures. As is well known, p -adic spaces have the

ractal (although very special) structure. Hence, our study opens a

ew perspective in rational p -adic dynamical systems on fractals. 

. Preliminaries 

.1. p -adic numbers 

In what follows p will be a fixed prime number. The set Q p is

efined as a completion of the rational numbers Q with respect to

he norm | · | p : Q → R given by 

 x | p = 

{
p −r x � = 0 , 

0 , x = 0 , 
(2.1) 

ere, x = p r m 

n with r, m ∈ Z , n ∈ N , (m, p) = (n, p) = 1 . The abso-

ute value | ·| p is non-Archimedean, meaning that it satisfies the

trong triangle inequality | x + y | p ≤ max {| x | p , | y | p } . We recall a

ice property of the norm, i.e. if | x | p > | y | p then | x + y | p = | x | p .
ote that this is a crucial property which is proper to the non-

rchimedenity of the norm. 

Any p -adic number x ∈ Q p , x � = 0 can be uniquely represented

n the form 

 = p γ (x ) (x 0 + x 1 p + x 2 p 
2 + · · · ) , (2.2)

here γ = γ (x ) ∈ Z and x j are integers, 0 ≤ x j ≤ p − 1 , x 0 > 0, j =
 , 1 , 2 , . . . In this case | x | p = p −γ (x ) . 

For each a ∈ Q p , r > 0 we denote 

 r (a ) = { x ∈ Q p : | x − a | p < r} 
nd the set of all p-adic integers 

 p = { x ∈ Q p : | x | p ≤ 1 } . 
he set Z 

∗
p = Z p \ pZ p is called a set of p -adic units. 

Recall that the p -adic exponential is defined by 

xp p (x ) = 

∞ ∑ 

n =0 

x n 

n ! 
, 

hich converges for every x ∈ B p −1 / (p−1) (0) . 

Put 

 p = { x ∈ Q p : | x − 1 | p < p −1 / (p−1) } . 
t is known [27] the following fact. 

emma 2.1. The set E p has the following properties: 
a) E p is a group under multiplication; 

b) | a − b| p < 1 for all a, b ∈ E p ; 
c) If a, b ∈ E p then it holds 

| a + b| p = 

{ 1 
2 
, if p = 2 

1 , if p � = 2 . 

d) If a ∈ E p , then there is an element h ∈ B p −1 / (p−1) (0) such that a =
exp p (h ) . 

Note that the basics of p -adic analysis, p -adic mathematical

hysics are explained in [27,48] . 

.2. p -adic sub-shift 

Let f : X → Q p be a mapping from a compact open set X of Q p 

nto Q p . We assume that (i) f −1 (X ) ⊂ X; (ii) X = 

⋃ 

j∈ I B r (a j ) can be

ritten as a finite disjoint union of balls of centers a j and of the

ame radius r such that for each j ∈ I there is an integer τ j ∈ Z

uch that 

 f (x ) − f (y ) | p = p −τ j | x − y | p , x, y ∈ B r (a j ) . (2.3)

or such a map f , define its Julia set by 

 f = 

∞ ⋂ 

n =0 

f −n (X ) . (2.4)

t is clear that f −1 (J f ) = J f and then f ( J f ) ⊂ J f . 

Following [9] the triple ( X, J f , f ) is called a p -adic weak repeller

f all τ j in (2.3) are nonnegative, but at least one is positive. We

all it a p -adic repeller if all τ j in (2.3) are positive. For any i ∈ I ,

e let 

 i := 

{
j ∈ I : B r (a j ) ∩ f (B r (a i )) � = ∅ 

}
= { j ∈ I : B r (a j ) ⊂ f (B r (a i )) }

the second equality holds because of the expansiveness and of the

ltrametric property). Then define a matrix A = (a i j ) I×I , called in-

idence matrix as follows 

 i j = 

{
1 , if j ∈ I i ;
0 , if j �∈ I i . 

f A is irreducible, we say that ( X, J f , f ) is transitive . Here the ir-

educibility of A means, for any pair ( i, j ) ∈ I × I there is positive

nteger m such that a (m ) 
i j 

> 0 , where a (m ) 
i j 

is the entry of the matrix

 

m . 

Given I and the irreducible incidence matrix A as above.

enote 

A = { (x k ) k ≥0 : x k ∈ I, A x k ,x k +1 
= 1 , k ≥ 0 } 

hich is the corresponding subshift space, and let σ be the shift

ransformation on �A . We equip �A with a metric d f depending

n the dynamics which is defined as follows. First for i, j ∈ I , i � = j

et κ( i, j ) be the integer such that | a i − a j | p = p −κ(i, j) . It clear that

( i, j ) < τ . By the ultra-metric inequality, we have 

 x − y | p = | a i − a j | p i � = j, ∀ x ∈ B r (a i ) , ∀ y ∈ B r (a j ) 

or x = (x 0 , x 1 , . . . , x n , . . . ) ∈ �A and y = (y 0 , y 1 , . . . , y n , . . . ) ∈ �,

efine 

 f (x, y ) = 

{
p −τx 0 

−τx 1 
−···−τx n −1 

−κ(x n ,y n ) , if n � = 0 

p −κ(x 0 ,y 0 ) , if n = 0 

here n = n (x, y ) = min { i ≥ 0 : x i � = y i } . It is clear that d f defines

he same topology as the classical metric which is defined by

(x, y ) = p −n (x,y ) . 

heorem 2.2 [9] . Let ( X, J f , f ) be a transitive p-adic weak repeller

ith incidence matrix A. Then the dynamics ( J f , f , | · | p ) is isometri-
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2.3. p -adic measure 

Let (X, B) be a measurable space, where B is an algebra of sub-

sets X . A function μ : B → Q p is said to be a p-adic measure if for

any A 1 , . . . , A n ⊂ B such that A i ∩ A j = ∅ ( i � = j ) the equality holds 

μ
( n ⋃ 

j=1 

A j 

)
= 

n ∑ 

j=1 

μ(A j ) . 

A p -adic measure is called a probability measure if μ(X ) = 1 . A

p -adic probability measure μ is called bounded if sup {| μ(A ) | p : A ∈
B} < ∞ . For more detail information about p -adic measures we re-

fer to [17,24] . 

2.4. Cayley tree 

Let �k + = (V, L ) be a semi-infinite Cayley tree of order k ≥ 1

with the root x 0 (whose each vertex has exactly k + 1 edges, ex-

cept for the root x 0 , which has k edges). Here V is the set of ver-

tices and L is the set of edges. The vertices x and y are called near-

est neighbors and they are denoted by l = 〈 x, y 〉 if there exists an

edge connecting them. A collection of the pairs 〈 x, x 1 〉 · · · 〈 x d−1 , y 〉
is called a path from the point x to the point y . The distance d ( x,

y ), x, y ∈ V , on the Cayley tree, is the length of the shortest path

from x to y . 

 n = 

{
x ∈ V | d(x, x 0 ) = n 

}
, 

V n = 

n ⋃ 

m =0 

W m 

, L n = { l = < x, y > ∈ L | x, y ∈ V n } . 

The set of direct successors of x is defined by 

S(x ) = { y ∈ W n +1 : d(x, y ) = 1 } , x ∈ W n . 

Observe that any vertex x � = x 0 has k direct successors and x 0 has

k + 1 . 

2.5. p -adic quasi Gibbs measure 

In this section we recall the definition of p -adic quasi Gibbs

measure (see [31] ). 

Let 	 = { 1 , 2 , . . . , q } , here q ≥ 2, ( 	 is called a state space )

and is assigned to the vertices of the tree �k + = (V, 
) . A config-

uration σ on V is then defined as a function x ∈ V → σ ( x ) ∈
	; in a similar manner one defines configurations σ n and ω on

V n and W n , respectively. The set of all configurations on V (resp.

V n , W n ) coincides with � = 	V (resp. �V n = 	V n , �W n 
= 	W n ). One

can see that �V n = �V n −1 
× �W n 

. Using this, for given configura-

tions σn −1 ∈ �V n −1 
and ω ∈ �W n 

we define their concatenations

by 

(σn −1 ∨ ω)(x ) = 

{
σn −1 (x ) , if x ∈ V n −1 , 

ω (x ) , if x ∈ W n . 

It is clear that σn −1 ∨ ω ∈ �V n . 

The (formal) Hamiltonian of p -adic Potts model is 

H(σ ) = J 
∑ 

〈 x,y 〉∈ L 
δσ (x ) σ (y ) , (2.5)

where J ∈ B (0 , p −1 / (p−1) ) is a coupling constant, and δij is the Kro-

neker’s symbol. 

A construct of a generalized p -adic quasi Gibbs measure corre-

sponding to the model is given below. 

Assume that h : V \ { x (0) } → Q 

	
p is a mapping, i.e. h x =

(h 1 ,x , h 1 ,x , . . . , h q,x ) , where h i,x ∈ Q p ( i ∈ 	) and x ∈ V �{ x (0) }. Given

t  
 ∈ N , we consider a p -adic probability measure μ(n ) 
h ,ρ

on �V n de-

ned by 

(n ) 
h 

(σ ) = 

1 

Z (h ) 
n 

exp { H n (σ ) } ∏ 

x ∈ W n 

h σ (x ) ,x (2.6)

ere, σ ∈ �V n , and Z (h ) 
n is the corresponding normalizing factor 

 

(h ) 
n = 

∑ 

σ∈ �V n 

exp { H n (σ ) } ∏ 

x ∈ W n 

h σ (x ) ,x . (2.7)

In this paper, we are interested in a construction of an in-

nite volume distribution with given finite-dimensional distribu-

ions. More exactly, we would like to find a p -adic probability mea-

ure μ on � which is compatible with given ones μ(n ) 
h 

, i.e. 

(σ ∈ � : σ | V n = σn ) = μ(n ) 
h 

(σn ) , forall σn ∈ �V n , n ∈ N . (2.8)

We say that the p -adic probability distributions (2.6) are com-

atible if for all n ≥ 1 and σ ∈ 	V n −1 : ∑ 

∈ �W n 

μ(n ) 
h 

(σn −1 ∨ ω) = μ(n −1) 
h 

(σn −1 ) . (2.9)

his condition according to the Kolmogorov extension theorem

see [12,22] ) implies the existence of a unique p -adic measure μh 

efined on � with a required condition (2.8) . Such a measure μh is

aid to be a p-adic quasi Gibbs measure corresponding to the model

31,32] . If one has h x ∈ E p for all x ∈ V �{ x (0) }, then the correspond-

ng measure μh is called p-adic Gibbs measure (see [37,38] ). 

By QG(H) we denote the set of all p -adic quasi Gibbs measures

ssociated with functions h = { h x , x ∈ V } . If there are at least two

istinct generalized p -adic quasi Gibbs measures such that at least

ne of them is unbounded, then we say that a phase transition

ccurs. 

The following statement describes conditions on h x guarantee-

ng compatibility of μ(n ) 
h 

(σ ) . 

heorem 2.3 [31] . The measures μ(n ) 
h 

, n = 1 , 2 , . . . (see (2.6) ) associ-

ted with q-state Potts model (2.5) satisfy the compatibility condition

2.9) if and only if for any n ∈ N the following equation holds: 

ˆ 
 x = 

∏ 

y ∈ S(x ) 

F ( ̂  h y , θ ) , (2.10)

ere and below a vector ˆ h = ( ̂ h 1 , . . . , ̂  h q −1 ) ∈ Q 

q −1 
p is defined by a

ector h = (h 1 , h 1 , . . . , h q ) ∈ Q 

q 
p as follows 

ˆ 
 i = 

h i 

h q 
, i = 1 , 2 , . . . , q − 1 (2.11)

nd mapping F : Q 

q −1 
p × Q p → Q 

q −1 
p is defined by F (x ; θ ) =

(F 1 (x ; θ ) , . . . , F q −1 (x ; θ )) with 

 i (x ; θ ) = 

(θ − 1) x i + 

∑ q −1 
j=1 

x j + 1 ∑ q −1 
j=1 

x j + θ
, 

x = { x i } ∈ Q 

q −1 
p , i = 1 , 2 , . . . , q − 1 . (2.12)

emark 2.1. In what follows, without loss of generality, we may

ssume that h q = 1 . Otherwise, in (2.6) we multiply and divide the

xpression on the right hand side by 
∏ 

x ∈ W n 
h q,x , and after replac-

ng h i by h i / h q , we get the desired equality. 

Let us first observe that the set ( 1 , . . . , 1 , h ︸ ︷︷ ︸ 
m 

, 1 , . . . , 1) ( m =

 , . . . , q − 1 ) is invariant for the Eq. (2.10) . Therefore, in what

ollows, we restrict ourselves to one of such lines, let us say

(h, 1 , . . . , 1) . 

In [38] to establish the phase transition, we considered

ranslation-invariant (i.e. h = { h x } x ∈ V \{ x 0 } such that h x = h y for all
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s

, y ) solutions of (2.10) . Then the Eq. (2.10) reduced to the follow-

ng one 

 = f θ (h ) , (2.13)

here 

f θ (x ) = 

(
θx + q − 1 

x + θ + q − 2 

)k 

. (2.14)

Hence, to establish the existence of the phase transition we

howed [37] that (5.5) has three nontrivial solutions if q is divisible

y p . Note that full description of all solutions of the last equation

as been carried out in [43,47] . In the section, we will show that

he function (2.14) is chaotic. 

. The fixed points of p -adic dynamical system (2.14) 

In this section, we study behavior of the fixed points of the

unction (2.14) . 

In what follows, for the sake of simplicity, we assume that p

3, k = 2 , 0 < | θ − 1 | p < | q | p < 1 . It is known [37,43] that, in this

ase, there exist three translation invariant p -adic Gibbs measures

0 , μ1 , μ2 (note that they are not bounded) which correspond to

he fixed points of f θ . Namely, the fixed points are x 0 = 1 and 

 1 = 

−2(q − 1) + (θ − 1) 2 + (θ − 1) 
√ 

−4(q − 1) + (θ − 1) 2 

2 

(3.1) 

 2 = 

−2(q − 1) + (θ − 1) 2 − (θ − 1) 
√ 

−4(q − 1) + (θ − 1) 2 

2 

(3.2) 

Let x (0) be a fixed point of an analytic function f ( x ). Let 

= 

d 

dx 
f (x (0) ) . 

he fixed point x (0) is called attractive if 0 ≤ | λ| p < 1, indifferent if

 λ| p = 1 , and repelling if | λ| p > 1. 

heorem 3.1. For the fixed points x 0 , x 1 , x 2 of f θ the following state-

ents hold: 

(i) x 0 is an attracting fixed point; 

ii) x 1 and x 2 are repelling fixed points. 

roof. Let x i be a fixed point of (2.14) . Then we have 

f ′ θ (x i ) = 

2(θ − 1)(θ − 1 + q ) x i 
(x i + θ + q − 2)(θx i + q − 1) 

(3.3) 

(i) From (3.3) we get 

f ′ θ (x 0 ) = 

2(θ − 1) 

θ − 1 + q 

ince | θ − 1 | p < | q | p using non-Archimedean norm’s property we

btain 

 f ′ θ (x 0 ) | p = 

| θ − 1 | p 
| q | p < 1 . 

hich means that x 0 is attracting. 

(ii) Using (3.1) and (3.2) one can calculate that 

x 1 , 2 + θ + q − 2 = 

(θ−1) 
(

2 ±
√ 

4 −4 q +(θ−1) 2 + θ−1 

)
2 

θx 1 , 2 + q − 1 = 

(θ−1) 
(

2 ±θ
√ 

4 −4 q +(θ−1) 2 −2 q + θ (θ−1) 
)

2 
ue to | θ − 1 | p < | q | p < 1 and using strong triangle inequality one

ets 

| x 1 , 2 | p = 1 , 

| x 1 , 2 + θ + q − 2 | p ≤ | θ − 1 | p , 
| θx 1 , 2 + q − 1 | p ≤ | θ − 1 | p . 
utting these into (3.3) we can easily get 

f ′ θ (x 1 , 2 ) 
∣∣

p 
≥ | q | p 

| θ − 1 | p > 1 . 

his yields the assumption. �

Now, we are going to describe basin of attraction 

 (x 0 ) = 

{
x ∈ Q p : f n θ (x ) → x 0 

}
f the fixed point x 0 = 1 . 

Let us denote 

K 1 = { x ∈ Q p : | x − x 0 | p < | q | p } 
K 2 = { x ∈ Q p : | x − x 0 | p > | q | p } 

t is easy to check that x 1 , 2 ∈ Q p \ (K 1 ∪ K 2 ) . We show that f θ ( x ) ∈
 1 for any x ∈ K 1 ∪ K 2 . 

Due to x 0 = 1 we have 

f θ (x ) − x 0 = 

(θ − 1) [ (θ + 1)(x − x 0 ) + 2(θ − 1) + q ] 

(x − x 0 + θ − 1 + q ) 2 
(x − x 0 ) 

(3.4) 

he non-Archimedean norm’s property implies that 

 (θ + 1)(x − x 0 ) + 2(θ − 1) + q | p = 

{| q | p , if x ∈ K 1 , 

| x − x 0 | p , if x ∈ K 2 , 

(3.5) 

nd 

 x − x 0 + θ − 1 + q | p = 

{| q | p , if x ∈ K 1 , , 

| x − x 0 | p , if x ∈ K 2 . 
(3.6)

nserting (3.5), (3.6) into (3.4) we find 

 f θ (x ) − x 0 | p = 

{ | (θ−1)(x −x 0 ) | p 
| q | p , if x ∈ K 1 

| θ − 1 | p , if x ∈ K 2 

(3.7)

ccording to | θ − 1 | p < | q | p , | x − x 0 | p < | q | p one gets | f θ (x ) −
 0 | p < | q | p for any x ∈ K 1 . It yields that f θ ( x ) ∈ K 1 for any x ∈
 1 ∪ K 2 . 

Moreover, from (3.7) one can see that f θ is a contraction on

 1 , which means that K 1 ⊂ A ( x 0 ). Besides, we also infer that K 2 ⊂
f −1 
θ

(K 1 ) , so K 2 ⊂ A ( x 0 ). Therefore, we conclude that the set 

 = 

( ⋃ 

n ≥0 

f −n 
θ

(K 1 ) 

) 

lso belongs to A ( x 0 ). 

Thus, we have proven the following result 

heorem 3.2. Let k = 2 and p ≥ 3. If 0 < | θ − 1 | p < | q | p then 

∪ 

n ≥0 
f −n 
θ ( K 1 ) 

)
= A ( x 0 ) . 

. Chaotic behavior of (2.14) 

In this section, we study the dynamics of the function f θ . In the

equel, we assume that p ≥ 3, k = 2 , q = mp n and 0 < | θ − 1 | p ≤
p −2 n −1 , for some m, n ∈ N and (m, p) = 1 . 

Now, we are ready to formulate the main result of this section. 
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Theorem 4.1. Let | θ − 1 | p ≤ p −2 n −1 , r = | p n (θ − 1) | p and X =
B r (x 1 ) ∪ B r (x 2 ) . If f θ : X → Q p be a function defined by (2.14) then

the dynamics (J f θ , f θ , | · | p ) is isometrically conjugate to the shift dy-

namics ( �A , σ , d f ) . 

To proof this thereom we need several auxiliary facts. 

Lemma 4.2. Let r = | p n (θ − 1) | p . Then for any x ∈ B r ( x 1 ) and y ∈
B r ( x 2 ) there exist p-adic integers αx and βy such that 

x = 1 − mp n + (1 + m 0 p 
n + p n +1 αx )(θ − 1) 

y = 1 − mp n − (1 + m 0 p 
n + p n +1 βy )(θ − 1) 

(4.1)

where 2 m 0 ≡ −m ( mod p) . 

Proof. It is enough to show that 

x 1 = 1 − mp n + (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) α

x 2 = 1 − mp n − (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) β

(4.2)

where α, β ∈ Z p . Since | θ − 1 | p ≤ p −2 n −1 there exists p -adic integer

γ such that 

−4(q − 1) + (θ − 1) 2 = 4 

(
1 − mp n + p n +1 γ

)
. 

It follows that √ 

−4(p − 1) + (θ − 1) 2 = 2 

(
1 + m 0 · p n + p n +1 γ ′ ), 

where γ ′ ∈ Z p . Put the last one into (3.1) one gets 

x 1 = 1 − mp n + (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) α, α ∈ Z p . 

Similarly, we have 

x 2 = 1 − mp n − (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) β, β ∈ Z p . 

Thus, we have shown that (4.2) holds. Using non-Archimedean

norm’s property from (4.2) one finds (4.1) . �

Corollary 4.3. Let r = | p n (θ − 1) | p . Then one has B r (x 1 ) ∩ B r (x 2 ) =
∅ . 

Proof. It is enough to show that x 1 �∈ B r (x 2 ) . From (4.2) , using non-

rchimedean norm’s property we have 

| x 1 − x 2 | p = | θ − 1 | p > r, 

which yields x 1 �∈ B r (x 2 ) . �

Lemma 4.4. Let r = | p n (θ − 1) | p and X = B r (x 1 ) ∪ B 2 (x 2 ) . Then

f −1 
θ

(X ) ⊂ X. 

Proof. We know that f θ has two inverse branches on X , which are 

f 1 ,θ (x ) = − (θ + q − 2) 
√ 

x + q − 1 

θ + 

√ 

x 
, 

f 2 ,θ (x ) = 

(θ + q − 2) 
√ 

x − q + 1 

θ − √ 

x 
. 

Let us show that f 1, θ ( x ) ∈ B r ( x 2 ) for any x ∈ X . We have 

f 1 ,θ (x ) + mp n − 1 + m 0 p 
n (θ − 1) 

= 

(θ − 1) 
[
m 0 p 

n ( 
√ 

x + 1) + mp n + (1 + m 0 p 
n )(θ − 1) 

]
θ + 

√ 

x 

= 

(θ − 1) 
[
m 0 p 

n ( 
√ 

x − 1) + (2 m 0 + m ) p n + (1 + m 0 p 
n )(θ − 1) 

]
θ + 

√ 

x 

(4.3)

Since θ, 
√ 

x ∈ E p by Lemma 2.1 we get 

| θ + 

√ 

x | p = 1 , | √ 

x − 1 | p ≤ 1 

p 
(4.4)

From 2 m 0 ≡ −m ( p ) we have 

| 2 m 0 + m | p ≤ 1 

p 
(4.5)
nserting (4.4), (4.5) and | θ − 1 | p ≤ 1 
p n +2 into (4.3) and using strong

riangle inequality, we obtain 

 

f 1 ,θ (x ) + mp n − 1 + (1 + m 0 p 
n )(θ − 1) | p ≤

∣∣p n +1 (θ − 1) 
∣∣

p 

hich is equivalent to 

f 1 ,θ (x ) = 1 − mp n − (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) β, 

for some β ∈ Z p . 

ccording to Lemma 4.2 one has f 1, θ ( x ) ∈ B r ( x 2 ). 

Now, we show that f 2, θ ( x ) ∈ B r ( x 1 ), for any x ∈ X . Let x ∈ X .

hen we have 

f 2 ,θ (x ) + mp n − 1 − (1 + m 0 p 
n )(θ − 1) 

= 

(θ − 1) 
[√ 

x − 1 + mp n − (θ − √ 

x )(1 + m 0 p 
n ) 

]
θ − √ 

x 

= 

(θ − 1) 
[
( 
√ 

x − 1)(2 + m 0 p 
n ) + mp n − (θ − 1)(1 + m 0 p 

n ) 
]

θ − √ 

x 

(4.6)

et us establish 

( 
√ 

x − 1)(2 + m 0 p 
n ) + mp n 

∣∣
p 

≤ 1 

p 2 n +1 
. 

ndeed, using x = 1 − mp n + (θ − 1) α, | α| p = 1 we have 

( 
√ 

x + 1) 
[
( 
√ 

x − 1)(2 + m 0 p 
n ) + mp n 

]
= (x − 1)(2 + m 0 p 

n ) + mp n ( 
√ 

x + 1) 

= mp n ( 
√ 

x − 1 − m 0 p 
n ) + (θ − 1)(2 + m 0 p 

n ) α

ince 
∣∣√ 

x − 1 + m 0 p 
n 
∣∣

p 
< p −n and | √ 

x + 1 | p = 1 , the strong trian-

le inequality with (4.7) implies 

( 
√ 

x − 1)(2 + m 0 p 
n ) + mp n 

∣∣
p 

≤ 1 

p 2 n +1 
. 

lugging the last one into (4.6) one gets 

 

f 2 ,θ (x ) + mp n − 1 − (1 + m 0 p 
n )(θ − 1) | p < | p n (θ − 1) | p . 

y Lemma 4.2 we find f 2, θ ( x ) ∈ B r ( x 1 ). 

Since x is an arbitrary, we conclude that f −1 
θ

(X ) ⊂ X . This com-

letes the proof. �

emma 4.5. Let r = | p n (θ − 1) | p . Then one has 

 f θ (x ) − f θ (y ) | p = 

| x − y | p 
p 2 r 

, for any x, y ∈ B r (x 1 ) 

nd 

 f θ (x ) − f θ (y ) | p = 

| x − y | p 
r 

, for any x, y ∈ B r (x 2 ) 

roof. Let x � = y . Then we have 

f θ (x ) − f θ (y ) 

x − y 
= 

(θ − 1)(θ + mp n − 1) R (x, y ) 

Q 

2 (x ) Q 

2 (y ) 
(4.7)

here 

 (x, y ) = 2 θxy + 

[
θ2 + θ (mp n − 2) + mp n − 1 

]
(x + y ) 

+ 2(mp n − 1)(θ + mp n − 2) (4.8)

Q(x ) = x + θ + mp n − 2 

It is easy to check that 

 Q(x ) | p = 

{ | θ − 1 | p , if x ∈ B r (x 1 ) 

| p n (θ − 1) | p , if x ∈ B r (x 2 ) 
(4.9)

et x, y ∈ B r ( x 1 ). Then by Lemma 4.2 we have 

x = 1 − mp n + (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) αx , 

y = 1 − mp n + (1 + m 0 p 
n )(θ − 1) + p n +1 (θ − 1) αy . 
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lugging last ones into (4.8) one gets 

 (x, y ) = (θ − 1) 2 
[ 

4(θ − 1) + p n +1 
[
3(θ − 1) + p n (2 m 0 θ − m ) + 4

(αx + αy ) + 2 p n 
[
(θ − 1)(2 m 0 + 1) + θ p n +2 αx αy 

+ m 0 p 
n (m 0 θ − m ) − 2 m 

]
+ 8 

] 
(4.1

imilarly, for x, y ∈ B r ( x 2 ) we obtain 

 (x, y ) = p n (θ − 1) 2 
[ 

2 m 0 p 
n 
[
m 0 (θ − 1) + m 0 + m 

]
+ 2 θ p n +2 αx αy

−p n +1 
[

p(θ − 1) − 2 m 0 θ + m 

](
αx + αy ) + 2(θ − 1) m 0 

] 
(4.11)

eeping into account the following relations 

| θ − 1 | p ≤ 1 
p 2 n +1 , 

| 3(θ − 1) + p n (2 m 0 θ − m ) + 4 | p = 1 , ∣∣(θ − 1)(2 m 0 + 1) + θ p n +2 αx αy + m 0 p 
n (m 0 θ − m ) − 2 m 

∣∣
p 

= 1 , ∣∣2 m 0 p 
n 
[
m 0 (θ − 1) + m 0 + m 

∣∣
p 

= 1 , 

| p(θ − 1) − 2 m 0 θ + m | p < 1 , 

nd using the non-Archimedean norm’s property, from (4.10) and

4.11) , we find 

 R (x, y ) | p = 

{ ∣∣(θ − 1) 2 
∣∣

p 
, if x, y ∈ B r (x 1 ) ∣∣p 2 n ( θ − 1) 2 

∣∣
p 

, if x, y ∈ B r (x 2 ) 
(4.12)

ence, by means of (4.9), (4.12) , from (4.7) one gets 

| f θ (x ) − f θ (y ) | p 
| x − y | p = 

{ 

1 
p n | θ−1 | p , if x, y ∈ B r (x 1 ) 

p n 

| θ−1 | p , if x, y ∈ B r (x 2 ) 

his completes the proof. �

orollary 4.6. Let r = | p n (θ − 1) | p . Then B r ( x i ) ⊂ f θ ( B r ( x j )), i, j ∈ {1,

} . 

roof. By Lemma 4.4 we have B r (x j ) ⊂ f θ (B r (x j )) , j = 1 , 2 .

ince | x 1 − x 2 | p = p n r ≤ 1 
p 2 n +1 by Lemma 4.4 one gets x 1 ∈

 1 ( x 2 ), x 2 ∈ B 1 

p 2 n 
(x 1 ) . This yields that B r ( x 1 ) ⊂ f θ ( B r ( x 2 )) and

 r ( x 2 ) ⊂ f ( B r ( x 1 )). �

roof of Thorem 4.1. According to Lemma 4.4 we have f −1 
θ

(X ) ⊂
. By Lemma 4.5 the triple (X, J f θ , f θ ) is a p -adic repeller. Finally,

y Corollary 4.6 an incidence matrix A has the following form: 

 = 

(
1 1 

1 1 

)

o, the triple (X, J f θ , f θ ) be a transitive. According to Theorem

.2 we conclude that the dynamics (J f θ , f θ , | · | p ) is isometrically

onjugate to the shift dynamics ( �A , σ , d f ). �

. Periodic p -adic quasi Gibbs measures 

In this section, we will given a consequence of Theorem 4.1 , i.e.

t allows us to show that how the set of the periodic p -adic quasi

ibbs measures is huge. 

First, we recall a coordinate structure in �k + : every vertex x (ex-

ept for x 0 ) of �k + has coordinates (i 1 , . . . , i n ) , here i m 

∈ { 1 , . . . , k } ,
 ≤ m ≤ n and for the vertex x 0 we put (0). Namely, the symbol

0) constitutes level 0, and the sites (i 1 , . . . , i n ) form level n (i.e.

(x 0 , x ) = n ) of the lattice. 

Let us define on �k + a binary operation ◦ : �k + × �k + → �k + as fol-

ows: for any two elements x = (i 1 , . . . , i n ) and y = ( j 1 , . . . , j m 

) put

 ◦ y = (i 1 , . . . , i n ) ◦ ( j 1 , . . . , j m 

) = (i 1 , . . . , i n , j 1 , . . . , j m 

) (5.1)

nd 

 ◦ x 0 = x 0 ◦ x = (i 1 , . . . , i n ) ◦ (0) = (i 1 , . . . , i n ) . (5.2)

By means of the defined operation �k + becomes a noncommu-

ative semigroup with a unit. Using this semigroup structure one

efines translations τg : �k + → �k + , g ∈ �k + by 

g (x ) = g ◦ x. (5.3)

t is clear that τ(0) = id. 

Let H ⊂ �k + be a sub-semigroup of �k + and h : �k + → Y be a

 -valued function defined on �k . We say that h is H - periodic if

 (τg (x )) = h (x ) for all g ∈ H and x ∈ �k + . Any �k + -periodic function

s called translation invariant . A p -adic quasi Gibbs measure μh is

alled H - periodic , if h is H -periodic function (see Fig. 1 ). 

Now for each m ≥ 2 we put 

 m 

= { x ∈ �k 
+ : d(x, x 0 ) ≡ 0( mod m ) } . (5.4)

ne can check that H m 

is a sub-semigroup. 

emark 5.1. We stress that in [32] we have established the exis-

ence of the phase transition for the considered model. To do so,

e found only translation-invariant solutions of (2.10) . In [38] it

as shown that H 2 -periodic solutions of (2.10) belonging to E p co-

ncides with translation-invariant ones. Therefore, it is natural to

nd periodic solutions of (2.10) in a general setting, which allows

o find periodic quasi Gibbs measures. 

Let us consider a H m 

-periodic function h = { h x } x ∈ V \{ x 0 } on the

nvariant line (h, 1 , . . . , 1) of the Eq. (2.10) . From the H m 

-periodicity

e infer that there is a m -collection of vectors { h 0 , . . . , h m −1 } , such

hat h x = h i , if d ( x, x 0 ) ≡ i (mod m ), i = 0 , . . . , m − 1 . On the invari-

nt line, we have h = (h , 1 , . . . , 1) (i = 0 , . . . , m − 1) . 
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Then the Eq. (2.10) , for the H m 

-periodic functions, reduces to

the following system 

h i = f θ (h i +1 ) , h m 

= f θ (h 0 ) , i = 1 , . . . , m − 1 . (5.5)

where f θ is defined as (2.14) . 

It is clear that the Eq. (5.5) is equivalent to finding m -periodic

points of the function f θ . Hence, the existence of periodic orbits

of the function implies the existence of H m 

-periodic p -adic quasi

Gibbs measures. It is well-known that the shift operator has in-

finitely many periodic points, therefore, Theorem 4.1 implies that

the function f θ also has infinitely many periodic points. Hence,

there are many H m 

-periodic p -adic quasi Gibbs measures. 
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