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ABSTRACT
In this paper, we define the limit set �ξ of an unconventional set of
contractive functions {fk} on the unit ball of non-Archimedean alge-
bra. Then, we prove that �ξ is compact, perfect and uniformly dis-
connected. It is shown that there is a new collection of contractive
mappings {F̃k} defined on �ξ . Moreover, we establish that the set
�ξ coincides with the limit set generated by the semi-group of {F̃k}.
This result allows us to further investigate the structure of �ξ by
means of this limiting set. As an application,wedemonstrate the exis-
tence of invariant measures on �ξ . We should stress that the non-
Archimedeanity of the space is essentially used in the paper. There-
fore, the methods applied in this paper are not longer valid in the
Archimedean setting (i.e. in case of real or complex numbers).

1. Introduction

In this paper, we deal with metric properties of unconventional sets of discrete contractive
dynamical systems defined over non-Archimedean algebras. The field of non-Archimedean
dynamical systems is one of the most popular areas of the modern mathematics. There
are many works devoted to p-adic and non-Archimedean dynamics.[1–11] We stress that
applications of p-adic numbers in p-adic mathematical physics,[12–14] quantummechan-
ics and many others [15–18] stimulated an increasing interest in the study of p-adic and
non-Archimedean dynamical systems.

On the other hand, the metric properties of limit sets in the Euclidean spaces have been
studied in investigations of random dynamical systems (see, for example [19–22]). These
investigations have found their applications in the fractal geometry.[23,24] This naturally
motivates to consider the metric properties of limit sets in a non-Archimedean setting. In
this direction, very recently, in [25] it has been considered a semi-group G generated by
a finite set { fi}Ni=1 of contractive functions on O (here O = {x ∈ K : |x| ≤ 1} is the closed
unit ball of the non-Archimedean algebra K). Namely, G = ⋃

k≥1 Gk, where Gk = { fi1 ◦
fi2 ◦ · · · ◦ fik, 1 ≤ i j ≤ N, 1 ≤ j ≤ k}. Furthermore, it was studiedmetric properties of the
limit set � of G which is a complement of the set of all points x ∈ O for which there exist
open neighbourhoods Ux of x such that g(Ux) ∩Ux = ∅ for all but finitely many g � G.

CONTACT Farrukh Mukhamedov farm@yandex.ru
©  Informa UK Limited, trading as Taylor & Francis Group
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2 F. MUKHAMEDOV AND O. KHAKIMOV

Note that the limit set � of G is a very important object in the study of random dynamical
systems (see, for example [5,11,26]).

One can easily see that the composition of two contractive mappings is again a con-
traction. But, in general, the product or the sum of such kind of contractions is not a con-
traction, but in a non-Archimedean situation, they are also contractions. Using that fact
in [27,28], the uniqueness limiting sets of unconventional iterates of contractive mappings
have been studied. Note that these results play an important role in the theory of p-adic
Gibbs measures.[9,29–32]

In this paper, we define the limit set �ξ of an unconventional set (see, for the definition
Section 3) of contractive functions {fk} onO, and a family of mappings ξ . Note that this set
can be considered as a non-Archimedean fractal. In Section 4, we prove that�ξ is compact,
perfect and uniformly disconnected. Moreover, we show that the set is self-similar with
respect to some functions {F̃k}. Note that the results of this section can be considered as an
extension of some results of [25] to more general setting. Based on results of Section 4, in
Section 5 it is introduced a new metric for which the functions {F̃k} become contractions
of �ξ . Moreover, we establish that the set �ξ coincides with the limit set generated by {F̃k}.
This result allows us to further investigate the structure of�ξ by means of this limiting set.
As an application, we demonstrate the existence of invariant measures on �ξ . We should
stress that the non-Archimedeanity of the algebra is essentially used in the paper. Therefore,
the methods applied in this paper are not longer valid in the Archimedean setting (i.e. in
case of real or complex numbers).

2. Definitions and preliminary results

Let K be a field with a non-Archimedean norm | · |, i.e. for all x, y � K one has
(1) |x| � 0 and |x| = 0 implies x = 0;
(2) |xy| = |x| · |y|; and
(3) |x + y| � max {|x|, |y|}.
Standard examples of such fields are fields of p-adic numbers Qp. Let p be a prime, the

set Qp is defined as a completion of the rational numbers Q with respect to the norm | · |p :
Q → R given by

|x|p =
{

p−r x �= 0,
0, x = 0, (2.1)

here, x = pr mn with r,m ∈ Z, n ∈ N, (m, p) = (n, p) = 1. The absolute value | · |p is non-
Archimedean. There are also many other examples of non-Archimedean fields (see, for
example [33]).

Now let (A, ‖ · ‖) be a non-Archimedean Banach algebra over K. This means that the
norm ‖ · ‖ of the algebra satisfies the non-Archimedean property, i.e. ‖x + y‖ � max {‖x‖,
‖y‖} for any x, y ∈ A. We recall a nice property of the norm, i.e. if ‖x‖ > ‖y‖ then ‖x +
y‖ = ‖x‖. Note that this is a crucial property which is proper to the non-Archimedenity of
the norm. There are many examples of such kind of spaces (see [34,35]).

Let us consider some basic examples of non-Archimedean Banach algebras.
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DYNAMICAL SYSTEMS 3

(1) Let K be a non-Archimedean field and put

Kn = {x = (x1, . . . , xn) : xk ∈ K, k = 1, . . . , n}.

Then (Kn, ‖ · ‖) with a norm ‖x‖ = max |xk| and usual pointwise summation and
multiplication operations, is a non-Archimedean Banach algebra over K.

(2) Let K be as above and put

c0 = {x = (xn) : xn ∈ K, xn → 0}.

The defined set is endowed with usual pointwise summation and multiplication
operations. Put ‖x‖=max |xk|, then (c0, ‖ · ‖) is a non-Archimedean Banach algebra
over K.

In what follows, byA we denote a non-Archimedean Banach algebra.
Put

B−(a, r) = {x ∈ A : ‖x − a‖ < r}, B(a, r) = {x ∈ A : ‖x − a‖ ≤ r},
S(a, r) = {x ∈ A : ‖x − a‖ = r},

where a ∈ A, r > 0.
In what follows, we will use the following lemma.

Lemma 2.1 ([36]): Let {ai}ni=1, {bi}ni=1 ⊂ A such that ‖ai‖ � 1, ‖bi‖ � 1, i = 1,… , n, then

∥∥∥∥
n∏

i=1

ai −
n∏

i=1

bi

∥∥∥∥ ≤ max
i≤i≤n

{‖ai − bi‖}.

We should stress that a similar inequality does not exist in the Archimedean setting. We
refer the reader, for the basics of non-Archimedean analysis, to [33,35].

Recall that a metric space X is said to be doubling if there is a constant k such that every
disk B in X can be covered with at most k disks of half the radius of B. A number of metric
spaces have this property, e.g. the Euclidean space, a compact Riemann surface, etc. How-
ever, a non-Archimedean space is not necessarily a doubling space, e.g.Cp (complex p-adic
field). Hence, it is very important to knowwhether a subspace of a non-Archimedean space
is a doubling space. Note that Qp is doubling. Let (X, d) be a complete metric space. Let B
be the collection of all bounded subsets of X. For a set E ∈ B, we denote the diameter of E
by diam(E) = supz,w∈E d(z, w). By definition, a set E ∈ B is called a uniformly perfect set if
E contains at least two points and there exists a constant c > 0 such that for any point x0 �
E and 0< r< diam(E), the annulus {x� X: cr� d(x, x0)� r} meets E. We say that a metric
space (X, d) is uniformly disconnected if there is a constant C> 1 so that for each x� X and
r > 0 we can find a closed subset A of X such that Br/C(x)�A�Br(x), and dist(A, X�A) �
C−1r.
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4 F. MUKHAMEDOV AND O. KHAKIMOV

3. The unconventional limit set

LetA be a non-Archimedean Banach algebra over the fieldK, andO = {x ∈ A : ‖x‖ ≤ 1}.
A mapping f : O → O is called contractive, if there is a constant λf � (0, 1) such that

‖ f (x) − f (y)‖ ≤ λ f ‖x − y‖, (3.1)

for all x, y ∈ O.
Now assume that we are given a collection { fi}Ni=1 of contractive mappings defined onO.

In what follows, we denote λ = max{λ fi}. It is clear that λ � (0, 1).
For convenience, instead of {1, 2,… , N} we will write [1, N]. In what follows, we fre-

quently use the denotation � = [1,N]N. The shiftmapping σ : � → � is defined by usual
way, i.e. σ (α)k = αk + 1, k ∈ N. Here α = (α1,… , αn,…).

LetM, L be fixed positive integers and consider a family ξ � {ξ ij: [1,N]→ [1,N]: (i, j)�
[1,M] × [1, L]} of mappings.

For each α � �, n ∈ N we denote

Fα,n =
M∑
i=1

L∏
j=1

F ξi j
α,n, (3.2)

where

F ξi j
α,n = fξi j (α1 ) ◦ · · · ◦ fξi j (αn), α = (α1, . . . , αn, . . . ). (3.3)

Put

Fξ =
⋃
n≥1

Fξ,n, Fξ,n = {
Fα,n : α ∈ �

}
.

The set Fξ is called an unconventional set of the semi-group G generated by a finite set
{ fi}Ni=1.

Remark 3.1: In the sequel, we always assume that the family ξ satisfies the following
condition:

N⋃
k=1

M⋃
i=1

L⋃
j=1

{ξi j(k)} = [1,N]. (3.4)

Otherwise, the set Fξ will be generated by a subset of { fi}Ni=1.

Example 3.1: Let us construct an example of a family of mappings ξ = {ξ ij:
[1, N] → [1, N]} which satisfies (3.4). For any integer number � � [1, N], we define an
action on [1, N] by

(� ∗ k) =
{

(� + k)(modN) if N � |(� + k)
N if N|(� + k). k ∈ [1,N].
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DYNAMICAL SYSTEMS 5

Then for any number ξ ij � [1, N], we define ξ ij(k) � (ξ ij
∗k), k � [1, N]. It is clear that ξ ij:

[1, N] → [1, N] and (3.4) holds.

In what follows, we need the following auxiliary fact.
Lemma 3.1: Every element F ∈ Fξ is a contractive mapping ofO.

Proof: Let F ∈ Fξ . By construction of the setFξ , there exist α � � and an integer number
n � 1 such that

F =
M∑
i=1

L∏
j=1

F ξi j
α,n. (3.5)

It is clear that F ξi j
α,n be amapping fromO intoO for any (i, j)� [1,M]× [1, L]. Consequently,

for any x ∈ O using the strong triangle inequality from (3.5) one can find

‖F(x)‖ ≤ max
1≤i≤M

∥∥∥∥∥∥
L∏
j=1

F ξi j
α,n(x)

∥∥∥∥∥∥ ≤ max
1≤i≤M
1≤ j≤L

∥∥∥F ξi j
α,n(x)

∥∥∥ ≤ 1.

This means that F is a mapping fromO intoO.
Let x, y ∈ O. Then by means of Lemma 2.1, we find

∥∥F(x) − F(y)
∥∥ ≤ max

1≤i≤M
1≤ j≤L

∥∥∥F ξi j
α,n(x) − F ξi j

α,n(y)
∥∥∥ . (3.6)

By (3.3), one gets

∥∥F ξi j
α,n(x) − F ξi j

α,n(y)
∥∥ ≤ λ‖x − y‖ for any (i, j) ∈ [1,M] × [1, L].

Now substituting the last one into (3.6) we obtain the required assertion. �

The main aim of this paper is to study the limiting set of Fξ . First, one defines the dis-
continuity set 	ξ ⊂ O of Fξ as follows: x � 	ξ if and only if there is a disk Br(x) such that
there are only finitely many F ∈ Fξ satisfying F(Br(x))�Br(x) = ∅. The limit set of Fξ is
denoted by �ξ , which is the compliment of the discontinuity set 	ξ , i.e. �ξ = O \ 	ξ .

4. Some properties of the unconventional limit set

In this section, we study several metric properties of the set �ξ . Namely, the followings are
the main results of the paper.

It is well-known from Hutchinson [21] that the limit set of a semi-group generated by
a finite set of contractive functions on a metric space is always a compact set. It turns out
that we also have a similar kind of result.
Theorem 4.1: One has �ξ = �̃ξ , where �̃ξ is defined by (4.9). Moreover, �ξ is compact.

The perfectness is a very important property for a metric space, since it has a number of
applications.
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6 F. MUKHAMEDOV AND O. KHAKIMOV

Theorem 4.2: If �ξ contains at least two points then it is perfect.

The doubling property of ametric space is also very important.Manymetric spaces have
the doubling property, e.g. the Euclidean space, a compact Riemann surface,etc. However,
not all non-Archimedean spaces have the doubling property, e.g. the limit set can be viewed
as a metric subspace of A. Hence, it is natural to ask whether a limit set has the doubling
property.

Theorem 4.3: Let K have a doubling property. Assume thatA = Kn, then�ξ is doubling and
uniformly disconnected.

To prove our main results, we need some auxiliary and preparatory results.
Let us denote

�
ξ
0 =

⎧⎨
⎩

M∑
i=1

L∏
j=1

x(n)
ξi j,α

: x(n)
ξi j,α

= F ξi j
α,n

(
x(n)

ξi j,α

)
for some α ∈ � and n ∈ N

⎫⎬
⎭ . (4.1)

Proposition 4.1: The limit set �ξ of Fξ coincides with the closure of �ξ
0 .

Proof: Let us first show that�ξ is closed. It is enough to establish that	ξ is open. Take any
x � 	ξ . Then, there exist r > 0 and {Fk}mk=1 ⊂ Fξ such that Fk(Br(x)) ∩ Br(x) = ∅, k =
1,m. Since for any y ∈ B−

r (x), one has Br(y) = Br(x), hence we have Fk(Br(y))�Br(y) = ∅.
This implies that B−

r (x) ⊂ 	ξ , so 	ξ is open.
Let x ∈ �

ξ
0 . Then, there exist α � � and an integer number n � 1 such that

x =
M∑
i=1

L∏
j=1

x(n)
ξi j,α

, (4.2)

where x(n)
ξi j,α

is a fixed point of F ξi j
α,n (which due to Lemma 3.1 exists).

Consider a sequence {Fm}∞
m=1 defined by

Fm =
M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m =
M∑
i=1

L∏
j=1

( fξi j (α1 ) ◦ · · · ◦ fξi j (αn))
m. (4.3)

It is clear that for any m � 1, we have Fm ∈ Fξ,nm, hence Fm ∈ Fξ . Take any r > 0 and
y � Br(x). Then, from (4.2) and (4.3) one finds

Fm(y) − x =
M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m
(y) −

M∑
i=1

L∏
j=1

x(n)
ξi j,α

=
M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m
(y) −

M∑
i=1

L∏
j=1

F ξi j
α,n

(
x(n)

ξi j,α

)
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DYNAMICAL SYSTEMS 7

=
M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m
(y) −

M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m(
x(n)

ξi j,α

)

=
M∑
i=1

L∑
j=1

[(
F ξi j
α,n

)m
(y) − (

F ξi j
α,n

)m(
x(n)

ξi j,α

)] ∏
k> j

(
F ξik
α,n

)m
(y)

∏
l< j

(
F ξil
α,n

)m(
x(n)

ξil ,α

)
.

The last equality with the strong triangle inequality implies that

∥∥Fm(y) − x
∥∥ ≤ max

i, j

∥∥∥(
F ξi j
α,n

)m
(y) − (

F ξi j
α,n

)m(
x(n)

ξi j,α

)∥∥∥ . (4.4)

The contractivity F ξi j
α,n with (4.4) yields

∥∥Fm(y) − x
∥∥ ≤ λm max

i, j

∥∥y − x(n)
ξi j,α

∥∥ ≤ λm.

Then, there exists a positive integermr such that Fm(y) � Br(x) for allm > mr. This means
that Fm(Br(x)) � Br(x) 	 ∅. Consequently, x � �ξ . Since �ξ is closed, we have �

ξ

0 ⊂ �ξ .
Now suppose that x0 �∈ �

ξ

0 . Then, there exists r > 0 such that Br(x0) ∩ �
ξ

0 = ∅. Choose
a positive integer n0 such that λn0 < r. Consider a function F ∈ Fξ defined by

F =
M∑
i=1

L∏
j=1

F ξi j
α,n0 for some α ∈ �.

It is easy to see that

‖F(x) − F(y)‖ ≤ λn‖x − y‖ ≤ λn for any x, y ∈ O. (4.5)

Denote

xF =
M∑
i=1

L∏
j=1

x(n0 )

ξi j,α
,

here as before x(n0)
ξi j,α

is a fixed point of F ξi j
α,n0 . Then xF ∈ �

ξ
0 . According to Lemma 3.1, the

function F has a unique fixed point zF on O. Now from the strong triangle inequality and
(4.5) we obtain

‖zF − xF‖ = ‖F(zF ) − xF‖

=
∥∥∥∥∥∥

M∑
i=1

L∏
j=1

F ξi j
α,n0 (zF ) −

M∑
i=1

L∏
j=1

F ξi j
α,n0 (x

(n0)
ξi j,α

)

∥∥∥∥∥∥
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8 F. MUKHAMEDOV AND O. KHAKIMOV

=

∥∥∥∥∥∥∥
M∑
i=1

L∑
j=1

[
F ξi j
α,n0 (zF ) − F ξi j

α,n0

(
x(n0 )

ξi j,α

)] ∏
k> j
l< j

F ξik
α,n0 (zF )F

ξil
α,n0

(
x(n0 )

ξil ,α

)∥∥∥∥∥∥∥
≤ max

i, j

∥∥∥F ξi j
α,n0 (zF ) − F ξi j

α,n0

(
x(n0 )

ξi j,α

)∥∥∥∏
k> j
l< j

∥∥∥F ξik
α,n0 (zF )F

ξil
α,n0

(
x(n0)

ξil ,α

)∥∥∥ ≤ λn0 < r. (4.6)

For any y ∈ B−
r (x0) due to contractivity of F, one gets

‖F(y) − zF‖ = ‖F(y) − F(zF )‖ < ‖y − zF‖.

Again the strong triangle inequality implies

‖F(y) − y‖ = ‖F(y) − zF + zF − y‖ = ‖y − zF‖.

Since y ∈ B−
r (x0) and B−

r (x0) ∩ �
ξ

0 = ∅, xF ∈ �
ξ
0 , one concludes that ‖y − xF‖ > r. There-

fore, from (4.6) it follows that

‖y − zF‖ = ‖y − xF + xF − zF‖ = ‖y − xF‖ > r.

Hence,

‖F(y) − y‖ = ‖y − xF‖ > r.

Consequently, with ‖x0 − y‖ < r one finds

‖F(y) − x0‖ = ‖F(y) − y + y − x0‖ = ‖F(y) − y‖ > r.

Thismeans that F(y) does not belong to the diskBr(x0). Hence, F(Br(x0))�Br(x0)= ∅which
implies x0 � 	ξ . It follows that �ξ ⊂ �

ξ

0 . Hence �ξ = �
ξ

0 . This completes the proof. �

Lemma 4.1: Let α � �. Then a sequence defined by

x(n)
α =

M∑
i=1

L∏
j=1

x(n)
ξi j,α

(4.7)

converges as n → 
. Here as before x(n)
ξi j,α

is a fixed point of F ξi j
α,n.

Proof: Due to the closedness ofO it is enough to show that the sequence (4.7) is Cauchy.
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DYNAMICAL SYSTEMS 9

Take an arbitrary ε > 0 and choose n0 ∈ N such that λn0 < ε. Then for any n, m �
n0 (n > m) from Lemma 2.1, we have

∥∥x(n)
α − x(m)

α

∥∥ ≤ max
i, j

∥∥x(n)
ξi j,α

− x(m)
ξi j,α

∥∥
= max

i, j

∥∥F ξi j
α,n

(
x(n)

ξi j,α

)
− F ξi j

α,m

(
x(m)

ξi j,α

) ∥∥
= max

i, j

∥∥F ξi j
α,m ◦ F ξi j

σm(α),n−m

(
x(n)

ξi j,α

)
− F ξi j

α,m

(
x(m)

ξi j,α

) ∥∥
≤ λm max

i, j

∥∥F ξi j
σm(α),n−m

(
x(n)

ξi j,α

)
− x(m)

ξi j,α

∥∥ ≤ λm < ε.

This means that {x(n)
α } is a Cauchy sequence. �

For a given α � � due to Lemma 4.1, we denote

xα = lim
n→∞

x(n)
α . (4.8)

Put

�̃ξ = {xα : α ∈ �}. (4.9)

From the above given proof we infer the following

Corollary 4.1: Let α � �. Then a sequence {x(n)
ξi j,α

} converges as n → 
.

Taking into account the last corollary, we denote

xξi j,α = lim
n→∞

x(n)
ξi j,α

. (4.10)

Hence, (4.8) can be rewritten as follows:

xα =
M∑
i=1

L∏
j=1

xξi j,α. (4.11)

Lemma 4.2: Let Fα,n ∈ Fξ . For any x = ∑M
i=1

∏L
j=1 x

(�)
ξi j,β

∈ �
ξ
0 let us define a mapping by

F̃α,n[x] :=
M∑
i=1

L∏
j=1

F ξi j
α,n

(
x(�)

ξi j,β

)
, (4.12)

Then, one has F̃α,n[�ξ
0] ⊂ �ξ .

Proof: Let us establish F̃α,n[x] ∈ �ξ . Take any r > 0 and y ∈ Br(F̃α,n[x]). Consider the fol-
lowing sequence:

Fm =
M∑
i=1

L∏
j=1

F ξi j
α,n ◦

(
F ξi j
β,l

)m
.
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10 F. MUKHAMEDOV AND O. KHAKIMOV

It is clear that Fm ∈ Fξ for allm � 1. Then by Lemma 2.1, one gets

∥∥Fm(y) − F̃α,n[x]
∥∥ =

∥∥∥∥∥∥
M∑
i=1

L∏
j=1

F ξi j
α,n ◦

(
F ξi j
β,�

)m
(y) −

M∑
i=1

L∏
j=1

F ξi j
α,n

(
x(�)

ξi j,β

)∥∥∥∥∥∥
≤ max

i, j

∥∥F ξi j
α,n ◦

(
F ξi j
β,�

)m
(y) − F ξi j

α,n
(
x(�)

ξi j,β

)∥∥
≤ λn max

i, j

∥∥(
F ξi j
β,�

)m
(y) − x(�)

ξi j,β

∥∥
< λn max

i, j

∥∥(
F ξi j
β,�

)m
(y) − (

F ξi j
β,�

)m(
x(�)

ξi j,β

)∥∥
≤ λm+n max

i, j

∥∥y − x(�)
ξi j,β

∥∥ ≤ λm.

This means that there existsmr ∈ N such that

Fm(Br(F̃α,n[x])) ∩ Br(x) �= ∅ for allm ≥ mr

which yields F̃α,n[x] ∈ �ξ . This completes the proof. �
Remark 4.1: Since�

ξ
0 ⊂ �ξ a natural question arises: how can we extend the function (4.12)

to �ξ ?

Given α, β � � and n ∈ N we define an element of � by

α[n] ∨ β = (α1, . . . , αn, β1, β2, . . . ).

Lemma 4.3: For each Fα,n ∈ Fξ,n and β � � the sequence

⎧⎨
⎩

M∑
i=1

L∏
j=1

F ξi j
α,n

(
x(m)

ξi j,β

)⎫⎬⎭
m∈N

is Cauchy. Here, as before, x(m)
ξi j,β

is a fixed point of F ξi j
β,m.

Proof: The proof immediately follows from
∥∥∥∥∥∥
∑
i

∏
j

F ξi j
α,n

(
x(m)

ξi j,β

) −
∑
i

∏
j

F ξi j
α,n

(
x(�)

ξi j,β

)∥∥∥∥∥∥ ≤ max
i, j

∥∥F ξi j
α,n

(
x(m)

ξi j,β

) − F ξi j
α,n

(
x(�)

ξi j,β

)∥∥
≤ λn max

i, j

∥∥x(m)
ξi j,β

− x(�)
ξi j,β

∥∥
≤ λn+min{m,�} → 0

�

For any Fα,n ∈ Fξ , we define

F̃α,n[xβ] := lim
m→∞

M∑
i=1

L∏
j=1

F ξi j
α,n

(
x(m)

ξi j,β

)
. (4.13)
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DYNAMICAL SYSTEMS 11

Proposition 4.2: For any Fα,n ∈ Fξ , one has

F̃α,n[xβ] = xα[n]∨β.

Moreover, F̃α,n[�ξ ] ⊂ �ξ .
Proof: By definition, we have

xα[n]∨β = lim
m→∞

M∑
i=1

L∏
j=1

x(m)

ξi j,α[n]∨β
, (4.14)

where x(m)

ξi j,α[n]∨β
is a fixed point of

fξi j (α1) ◦ · · · ◦ fξi j (αn)︸ ︷︷ ︸
F

ξi j
α,n

◦ fξi j (β1 ) ◦ · · · ◦ fξi j (βn−m )︸ ︷︷ ︸
F

ξi j
β,m−n

.

On the other hand, one has

F̃α,n[xβ] = lim
m→∞

M∑
i=1

L∏
j=1

F ξi j
α,n

(
x(m)

ξi j,β

)
. (4.15)

Thus, one gets∥∥∥∥∥∥
∑
i

∏
j

F ξi j
α,n

(
x(m)

ξi j,β

) −
∑
i

∏
j

x(m)
ξi j,γ

∥∥∥∥∥∥ ≤ max
i, j

∥∥∥F ξi j
α,n

(
x(m)

ξi j,β

) − x(m)

ξi j,α[n]∨β

∥∥∥
= max

i, j

∥∥∥F ξi j
α,n

(
x(m)

ξi j,β

) − F ξi j
α,n ◦ F ξi j

β,m−n

(
x(m)

ξi j,α[n]∨β

)∥∥∥
≤ λn max

i, j

∥∥∥F ξi j
β,m

(
x(m)

ξi j,β

) − F ξi j
β,m−n

(
x(m)

ξi j,α[n]∨β

)∥∥∥
≤ λm max

i, j

∥∥∥F ξi j
σm−n(β),n

(
x(m)

ξi j,β

) − x(m)

ξi j,α[n]∨β

∥∥∥
≤ λm.

Consequently, from (4.14) and (4.15) we find the desired equality. This completes the
proof. �

Let k � [1, N] and β � �. For any α � � with α1 = k, we denote F ξi j
k,1 := F ξi j

α,1 and
k�β � α[1]�β .

Corollary 4.2: Let Fk,1 = ∑M
i=1

∏L
j=1 F

ξi j
k,1 . Then, one has

N⋃
k=1

F̃k,1(�ξ ) = �ξ. (4.16)

Now we are ready to turn to the proofs of main results.
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12 F. MUKHAMEDOV AND O. KHAKIMOV

Proof of Theorem 4.1: Let us first show that �̃ξ is compact. To do so, we define a mapping
π : � → �̃ξ as follows:

π(α) = xα.

It is known that� is compact, and to establish compactness of �̃ξ it is enough to show that
π is continuous. Suppose that α = (α1,… , αk,…) � � and ε > 0. Choose n0 ∈ N such
that λn0 < ε. Then, for any β � � with βk = αk, k � n0, we find

∥∥∥∥∥∥
M∑
i=1

L∏
j=1

Fξi j
β,n0

(
x(n0 )

ξi j,β

) −
M∑
i=1

L∏
j=1

Fξi j
α,n

(
x(n)

ξi j,α

)∥∥∥∥∥∥ ≤ max
i, j

∥∥∥Fξi j
β,n0

(
x(n0 )

ξi j,β

) − Fξi j
α,n

(
x(n)

ξi j,α

)∥∥∥
= max

i, j

∥∥∥Fξi j
α,n0

(
x(n0 )

ξi j,β

) − Fξi j
α,n0 ◦ Fξi j

σ n0 (α),n−n0

(
x(n)

ξi j,α

)∥∥∥
≤ λn0 max

i, j

∥∥∥x(n0 )
ξi j,β

− Fξi j
σ n0 (α),n−n0

(
x(n)

ξi j,α

)∥∥∥
≤ λn0 < ε. (4.17)

From (4.17) as n→ 
 one gets ‖x(n0)
β − xα‖ < ε. It follows thatπ is continuous. Therefore,

�̃ξ is compact. It is clear that�ξ
0 ⊂ �̃ξ ⊂ �ξ.As a result, due to closedness of �̃ξ and�

ξ

0 =
�ξ (see Proposition 4.1) we immediately find�ξ = �̃ξ . Consequently,�ξ is compact. The
proof is complete. �

From the last proof, we immediately find the following.

Corollary 4.3: One has �ξ = �̃ξ . Moreover, the mapping π : � → �ξ given by π(α) = xα

is well-defined (see (4.8)).

Proof of Theorem 4.2: Let �ξ contain at least two points. Since �ξ = �̃ξ and �
ξ

0 = �̃ξ it
is enough to show that each x ∈ �

ξ
0 is not isolated point of �̃ξ .

Let x ∈ �
ξ
0 . Then, there exist α � � and a positive integer n such that

x =
M∑
i=1

L∏
j=1

x(n)
ξi j,α

,

where x(n)
ξi j,α

is a fixed point of F ξi j
α,n. It is clear that

x =
M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m(
x(n)

ξi j,α

)
for allm ≥ 1.

Take any r > 0 and yβ ∈ �̃ξ \ Br(x). Choose a positive integer m such that λm < r
2 . Take

γ � � such that γ jn + i = αi for all i = 1, n and j = 0,m − 1.
Note that

F ξi j
γ ,mn = ( fξi j (α1 ) ◦ · · · ◦ fξi j (αn )) ◦ · · · ◦ ( fξi j (α1) ◦ · · · ◦ fξi j (αn))︸ ︷︷ ︸

m

= (
F ξi j
α,n

)m
.
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DYNAMICAL SYSTEMS 13

So,

Fγ ,mn =
M∑
i=1

L∏
j=1

F ξi j
γ ,mn ∈ Fξ .

Due to Proposition 4.2, we have

F̃γ ,mn[yβ] = lim
k→∞

M∑
i=1

L∏
j=1

F ξi j
γ ,mn

(
y(k)
ξi j,β

)

which belongs to �̃ξ . Now choose k � 1 such that
∥∥∥∥∥∥F̃γ ,mn[yβ] −

M∑
i=1

L∏
j=1

F ξi j
γ ,mn

(
y(k)
ξi j,β

)∥∥∥∥∥∥ <
r
2
. (4.18)

One can see that

F̃γ ,mn[yβ] − x = F̃γ ,mn[yβ] −
M∑
i=1

L∏
j=1

F ξi j
γ ,mn

(
y(k)
ξi j,β

) +
M∑
i=1

L∏
j=1

F ξi j
γ ,mn

(
y(k)
ξi j,β

)

−
M∑
i=1

L∏
j=1

(
F ξi j
α,n

)m(
x(n)

ξi j,α

)
= F̃γ ,mn[yβ] −

∑
i

∏
j

F ξi j
γ ,mn

(
y(k)
ξi j,β

)

+
∑
i

∑
j

[
F ξi j
γ ,mn

(
y(k)
ξi j,β

)
− F ξi j

γ ,mn

(
x(n)

ξi j,α

)]∏
l> j
u< j

F ξil
γ ,mn

(
y(k)
ξil ,β

)
F ξiu
γ ,mn

(
x(n)

ξiu,α

)
.

(4.19)

Noting

∥∥∥F ξi j
γ ,mn

(
y(k)
ξi j,β

) − F ξi j
γ ,mn

(
x(n)

ξi j,α

)∥∥∥ ≤ λmn < λm <
r
2

and using (4.18) and the strong triangle inequality from (4.19) we obtain ‖F̃γ ,mn[yβ] − x‖ <

r. Hence, F̃γ ,mn[yβ] ∈ �̃ξ ∩ Br(x). This means that x is not isolated point of �̃ξ . Conse-
quently, �ξ is perfect. �
Proof of Theorem 4.3: Let K be doubling. Now, we show that A (here A = Kn) has the
same property. Take any ball Br(a) in A (where a = (a1, . . . , an)). Then, one can see that
Br(a) = Br(a1) × · · · × Br(an). Due to the doubling of K, there is k such that

Br(ai) ⊂
k⋃

ji=1

Br/2(ai, ji ).
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14 F. MUKHAMEDOV AND O. KHAKIMOV

Hence, one finds

Br(a) ⊂
k⋃

j1,..., jn=1

Br/2(a1, j1 ) × · · ·Br/2(an, jn )

=
k⋃

j1,..., jn=1

Br/2(a j1,..., jn ), a j1,..., jn = (a1, j1, . . . , an, jn ).

This means that A is doubling. Now since �ξ ⊂ O ⊂ A, the limiting set also has dou-
bling property. For every a � �ξ and r > 0, let A = Br(a). Then Br/2(a) � A � Br(a). For
any y � �ξ�Br(a) and x � Br(a), by the strong triangle equality, we have ‖x − y‖ = ‖
y − a‖ � r > r/2, namely dist(Br(a), �ξ�Br(a)) � r/2, which shows that �ξ is uniformly
disconnected. �

5. Invariant measures

In this section, we will show that there is a measure on�ξ which is invariant with respect to
themappings {F̃k}. This is an analogue of the famousHutchinson’s result about the existence
of the invariant measure for { fi}Ni=1.

Consider the set�ξ . Due to Corollary 4.3, one has�ξ = �̃ξ . Therefore, in what follows,
we deal with �̃ξ . From (4.10), we infer that

�̃ξ =
{
xα =

M∑
i=1

L∏
j=1

xξi j,α : α ∈ �

}
. (5.1)

Now we define a mapping d : �̃ξ × �̃ξ → R+ by

d(xα, xβ ) = max
i, j

‖xξi j,α − xξi j,β‖. (5.2)

It is clear that d is a metric on �̃ξ .
Lemma 5.1: The set �̃ξ is close with respect to the metric d.

Proof: It is enough to establish that themappingπ : � → �̃ξ is continuousw.r.t. themetric
d. Take any α = (α1,… , αk,…) � � and ε > 0. Due to (4.10), there is n0,1 ∈ N such that

∥∥xξi j,α − x(n)
ξi j,α

∥∥ < ε (5.3)

for all n � n0, 1.
Nowwe choose n0 ∈ Nwith n0 > n0, 1 such that λn0 < ε. Then, for any β � � with βk =

αk, k � n0, we have ∥∥x(n0 )

ξi j,β
− x(n)

ξi j,β

∥∥ = ∥∥F ξi j
β,n0

(
x(n0 )

ξi j,β

) − F ξi j
β,n

(
x(n)

ξi j,β

)∥∥
≤ λn0

∥∥x(n0 )

ξi j,β
− F ξi j

σn0 (β),n−n0

(
x(n)

ξi j,β

)∥∥
≤ λn0 < ε, for all n ≥ n0.
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DYNAMICAL SYSTEMS 15

From this due to (4.10), we have
∥∥x(n0 )

ξi j,β
− xξi j,β

∥∥ < ε. (5.4)

Noting x(n0)
ξi j,α

= x(n0 )

ξi j,β
from (5.3),(5.4) using the strong triangle inequality one gets

‖xξi j,α − xξi j,β‖ < ε.

Consequently, by definition of d we get

d(xα, xβ ) < ε.

The last one yields the continuity of π . This completes the proof. �
Proposition 5.1: Let α � �. Then for any n � 1 the mapping F̃α,n defined as (4.13) is a
contraction on (�̃ξ , d).

Proof: Take any xβ, xγ ∈ �̃ξ . Then from Proposition 4.2, one finds

F̃α,n[xβ] = xα[n]∨β, F̃α,n[xγ ] = xα[n]∨γ .

Therefore, we have

d(F̃α,n[xβ], F̃α,n[xγ ]) = max
i, j

‖xξi j,α[n]∨β − xξi j,α[n]∨γ ‖.

Due to (4.10) and by non-Archimedean norm’s property one can findm0 � n such that for
allm � m0 one has

d(F̃α,n[xβ], F̃α,n[xγ ]) = max
i, j

∥∥x(m)

ξi j,α[n]∨β
− x(m)

ξi j,α[n]∨γ

∥∥. (5.5)

Hence, we obtain
∥∥x(m)

ξi j,α[n]∨β
− x(m)

ξi j,α[n]∨γ

∥∥ = ∥∥F ξi j
α,n ◦ F ξi j

β,m−n

(
x(m)

ξi j,α[n]∨β

) − F ξi j
α,n ◦ F ξi j

γ ,m−n
(
x(m)

ξi j,α[n]∨γ

)∥∥
≤ λn

∥∥F ξi j
β,m−n

(
x(m)

ξi j,α[n]∨β

) − F ξi j
γ ,m−n

(
x(m)

ξi j,α[n]∨γ

)∥∥. (5.6)

On the other hand, one has
∥∥F ξi j

β,m−n

(
x(m)

ξi j,α[n]∨β

) − x(m)
ξi j,β

∥∥ = ∥∥F ξi j
β,m−n

(
x(m)

ξi j,α[n]∨β

) − F ξi j
β,m

(
x(m)

ξi j,β

)∥∥
≤ λm−n

∥∥x(m)

ξi j,α[n]∨β
− F ξi j

σm−n(β),n

(
x(m)

ξi j,β

)∥∥
≤ λm−n → 0 as m → ∞.

Similarly, we get

∥∥F ξi j
β,m−n

(
x(m)

ξi j,α[n]∨β

) − x(m)
ξi j,β

∥∥ ≤ λm−n → 0 as m → ∞.
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16 F. MUKHAMEDOV AND O. KHAKIMOV

Accordingly, the last inequalities with (5.6) imply that

∥∥x(m)

ξi j,α[n]∨β
− x(m)

ξi j,α[n]∨γ

∥∥ ≤ λn
∥∥x(m)

ξi j,β
− x(m)

ξi j,γ

∥∥.

It then follows from (5.5) that

d(F̃α,n(xβ ), F̃α,n(xγ )) ≤ λn max
i, j

∥∥∥x(m)
ξi j,β

− x(m)
ξi j,γ

∥∥∥
= λnd(xβ, xγ ).

This completes the proof. �
Corollary 5.1: For any k � [1, N], the mapping F̃k,1 is a contraction on (�̃ξ , d).

The last corollary yields that we can consider a collection {F̃k,1}Nk=1 of contractions on
(�̃ξ , d) for which one can ask the following question: Does the set �ξ coincide with the
limiting set � generated by the collection of contractions {F̃k,1}Nk=1?

To get an affirmative answer to this question we recall some notions. Following to
Hutchinson,[21] the limit set � of the collection {F̃k,1}Nk=1 is the closure (see [25])

�0 = {
x ∈ �̃ξ : x is a fixed point of F̃α1,1 ◦ · · · ◦ F̃αn,1 for some α1, . . . , αn ∈ [1,N]

}
.

For a given collection {α1,… , αn } �[1, N] by (α1,… , αn) we denote an element of �

defined by

(α1, . . . , αn) = (α1, . . . , αn, α1, . . . , αn, . . . ).

Namely, (α1,… , αn) is a n-periodic point of the shift σ . Then, due to Proposition 4.2 a fixed
point of F̃α1,1 ◦ · · · ◦ F̃αn,1 is the element x(α1,...,αn ).

Consequently, one finds

�0 = {
x ∈ �̃ξ : x = xα, α is n-periodic point of σ for some n ∈ N

}
.

We want to show that �
d
0 = �̃ξ . Indeed, take any xα ∈ �̃ξ and ε > 0. Choose n0 ∈ N

such that λn0 < ε. Then, using the argument as in Lemma 5.1 for any β = (β1, . . . , βn0 )we
obtain d(xα , xβ) < ε. This means that �d

0 = �̃ξ . Thus, we have proven the following result

Theorem 5.1: Let � be a limit set of the collection of contractions {F̃k,1}Nk=1 on (�̃ξ , d). Then
one has � = �̃ξ .

This theorem allows us to further investigate the structure of �̃ξ bymeans of the limiting
set of semi-group generated by {F̃k,1}Nk=1 on �̃ξ . Furthermore, one can study the Hausdorff
dimension of the set �̃ξ . Now we are going to demonstrate the existence of invariant mea-
sures on �̃ξ .

Let Bξ be the Borel σ -algebra of subsets of �̃ξ . By M1(�̃ξ ) we denote the set of all
probability measures defined on the measurable space (�ξ ,Bξ ).

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 1
9:

04
 0

1 
A

pr
il 

20
16

 



DYNAMICAL SYSTEMS 17

Assume that ρ = {ρi}Ni=1 is a collection of positive numbers such that ρ i � (0, 1) and∑n
i=1 ρi = 1. Now we define a mapping Sρ : M1(�̃ξ ) → M1(�̃ξ ) by

(Sρμ)(A) =
N∑
i=1

ρiμ
(
F̃−1
i,1 (A)

)
, A ∈ Bξ . (5.7)

A measure ν ∈ M1(�̃ξ ) is called invariant w.r.t. Sρ if one has Sρν = ν.
Following a general scenario, we consider theHutchinsonmetric [21] onM1(�̃ξ )which

is defined as follows:

dH (μ, ν) = sup
{∫

ϕdμ −
∫

ϕdν : ϕ ∈ C0(�̃ξ , R) : |ϕ(x) − ϕ(y)| ≤ d(x, y) ∀x, y ∈ �̃ξ

}
.

Due to Proposition 5.1 and following [21] one can prove the following.

Theorem 5.2: The map Sρ is a contractive mapping w.r.t. the dH metric. Moreover, there is a
unique invariant measure νξ ∈ M1(�̃ξ ).

Now we want to exactly construct the invariant measure νξ . First, recall that F denotes
a σ -algebra F generated by cylindrical subsets of �. Let μρ be the product measure on
(�,F ) induced by the measure ρ(i) = ρ i on each factor {1,… , N}. In what follows, by σ i

we denote ithshift operator σ i: � → � defined by σ i(α) = i�α, i.e. σ i(α1,… , αn,…) =
(i, α1,… , αn,…).

From Proposition 4.2 and 4.8, one has

π ◦ σi = F̃i,1 ◦ π (5.8)

for every i � [1, N].
Now on the measurable space (�̃ξ ,Bξ ), we define a measure νξ as follows:

ν̃ξ (A) = μρ(π−1(A)), A ∈ Bξ . (5.9)

Theorem 5.3: The measure ν̃ξ is invariant with respect to Sρ .

Proof: First, we note that the measure μρ is invariant with respect to {σ 1,… , σN} and ρ,
i.e. one has

μρ(B) =
n∑

i=1

ρiμρ(σ−1
i (B)), B ∈ F .
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18 F. MUKHAMEDOV AND O. KHAKIMOV

Therefore, the last equality with (5.8),(5.9) yields

ν̃ξ (A) = μρ(π−1(A))

=
n∑

i=1

ρiμρ

(
σ−1
i (π−1(A))

)

=
n∑

i=1

ρiμρ

(
π−1(F̃−1

i,1 (A))
)

=
n∑

i=1

ρiν̃ξ

(
F̃−1
i,1 (A)

)
, A ∈ Bξ .

This completes the proof. �

FromTheorems 5.2 and 5.3, we infer that themeasure ν̃ξ is the unique invariantmeasure
for Sρ . Our result shows that even in a general setting rather than [21] one can find unique
invariant measure on the set �̃ξ .
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